On losses from landslides associated with large dams

David Petley1*

David Petley1*

1Durham University, UK

In 1963 the Vajont landslide in Northern Italy slid into a reservoir, generating a displacement wave that killed over 2500 people. Since then there has been a high level of awareness of landslide hazards amongst the engineers of large dams, such that there has been no repeat event on a similar scale. However, landslides continue to generate significant problems at large dam sites and on the banks of the associated reservoirs.

This paper examines the occurrence of landslides associated with dam projects over the last decade. It is demonstrated that reservoir bank failures continue to cause high levels of economic loss, although the loss of life in these events is reasonably low. The most notable case in recent year has occurred along the banks of the Three Gorges reservoir in China, where landslides have occurred at a higher than expected rate, resulting in the need to relocate large numbers of people. However, the data suggest that landslides are a very significant hazard during the construction of large dams. Since 2002 at least 550 lives have been lost in landslide events at or near to the construction sites of large dam projects. Most of these landslides, which have occurred in particular in East and South Asia, are the result of rainfall triggered rock slope collapses and debris flows, although some have occurred as a result of seismic triggering.

This paper examines the spatial and temporal occurrence of these losses and demonstrates that there appears to be an upward trend in the annual number of events. Over the next two decades a very large number of new dam projects are planned in high mountain area, particularly in Asia. This research suggests that a much higher level of attention needs to be paid to landslides during the construction of these large infrastructure projects if total losses over the this period are not to approach those of the original Vajont landslide.

\textbf{Keywords:} landslide, dam, reservoir, debris flow

\begin{small}

\begin{tabular}{l}
\textbf{キーワード:} landslide, dam, reservoir, debris flow \\
\textbf{Keywords:} landslide, dam, reservoir, debris flow
\end{tabular}

\end{small}
2009年バダン地震による降下軽石堆積物の崩壊とハロイサイトの形成
Landslides of pumice fall deposits induced by the 2009 Padang earthquake and the formation of halloysite

中野 真帆 1*, 千木 雅弘 2, Lim Choun-Sian 3
Maho Nakano 1*, Masahiro Chigira 2, Choun-Sian Lim 3

1 京都大学大学院理学研究科地球惑星科学専攻, 2 京都大学防災研究所, 3 ケパンサン大学東南アジア防災研究所
1Division of Earth and Planetary Science, Graduate School of Science, Kyoto University, 2Disaster Prevention Research Institute, Kyoto University, 3Southeast Asia Disaster Prevention Research Institute, Kebangsaan University Malaysia

2009年のバダン地震は、約 1000 の地すべりを引き起こした。地すべりによる死者は少なくとも 600 人ものほったが、それはこの地震による総死者数の約半分にも達した。我々は、これらの地すべりのメカニズムを解明するために、野外調査と室内実験を行った。

我々は、最も破壊的で流走距離の長い地すべりが起こったタンディカット地域を中心に調査を行った。タンディカット地域では、古土壤の上を降下軽石層（以下 Qhp）が覆っている。野外調査によって、我々は地すべりの起こった場所にいくつかの共通点を見つけた。それは、1）Qhp が4 m以上厚く堆積した地域で地すべりが発生した、2）すべり面は、Qhp の最下部にある軽石 - 古土壤混合層に形成された、という点である。

X 線試験分析によると、軽石 - 古土壤混合層はハロイサイトに富んでいるが、古土壤はギブサイトに富み、ハロイサイトはほとんど含んでいない。そして、古土壤と混合していない上方の Q hp では、ハロイサイトのピークを全く示さない。野外での簡易貫入試験によると、このハロイサイトに富んだ軽石 - 古土壤混合層が最も低い貫入抵抗値をとっていた。

これらの証拠は、ハロイサイトを大量に含む軽石 - 古土壤混合層が、この地域での地震による地すべりにおいて最も重要な地質的条件の一つであることを示している。古土壤 - 軽石混合層の古土壤部分のハロイサイトは、おそらく古土壤のギブサイトと混合層内と上の軽石から供給された溶存シリカの反応で形成されたものである。混合層の軽石部分のハロイサイトの形成は、質的に不透水の古土壤の上に停滞する地下水によって促進されたと考えられる。

キーワード: ハロイサイト, 2009年バダン地震, ランスライド, 降下軽石堆積物, 地質ハザード, 地震地すべり

Keywords: halloysite, the 2009 Padang earthquake, landslide, pumice fall deposits, geohazard, landslide induced by earthquake
Indonesia is an archipelagic country which extends on one of the most active seismicity area in the world. In geological perspective, the west and south coast of the archipelago takes apart into Pacific Ring of Fire makes it numerously contains active volcanic mountains which extensively supplies loose volcanic material. The tropical climate brings consequence of high precipitation of the most area. These facts make Indonesia has high vulnerability against geo-disaster which induced by combination of earthquake and rainfall on volcanic areas.

One of the most devastating earthquakes in Indonesia struck West Sumatra Province on September 30, 2009, at 5:16 p.m. with MW 7.6 magnitudes, caused about more than 1000 deaths. The earthquake excited number of landslides which took more than 60% of total earthquake death toll. The most extensive landslides which occurred in Tandikat, Padang Pariaman Regency, buried hundreds of people and flattened some villages (Fig.1). These landslides occurred on loose pumice layered mountain during rainfall. The combination of intensive rainfall and strong earthquake is considered to decreases the slope stability dramatically. This study attempts to reveal contributory factors which involved on the event.

Integrated study of the landslide elaborating field investigation, laboratory work and numerical modelling were conducted. Geological investigation on the landslide area and laboratory investigation had been performed to examine geological features and mechanical properties of sliding material. The field investigation consisted of soil sampling, Standard Penetration Test (SPT), geological logging, in-situ permeability and density test. Further examination about mechanical properties of landslide deposit samples subsequently performed in laboratory. Several static and dynamic tests using cyclic triaxial apparatus had been conducted to study about stress-strain history of the soil under dynamic condition. The mechanical parameters of the material were then derived from both geological investigation and laboratory test by correlating SPT values and taking laboratory tests result. These parameters were then used into numerical model using finite element method software ABAQUS to analyze earthquake effect by considering time-historical acceleration from actual earthquake record.

Field investigation revealed that, particularly in the area, impermeable clay stratum is overlain by porous pumice layer. The difference of permeability may cause the saturation of lower part of the pumice layer when rainfall percolates. Both static and stress-controlled dynamic triaxial test showed the contractive behaviour of pumice deposit. This behaviour brought the consequence of excess pore water pressure increase at small strains. Immediate liquefaction occurred when specimen was conditioned as fully saturated and initial pore water pressure was given as to simulate ground water table after rainfall.

Finite element modelling using ABAQUS software indicated amplification phenomena of earthquake Finite element modelling using ABAQUS software indicated amplification phenomena of earthquake acceleration in the landslide area. The contributing factor of the amplification was the thick clay stratum and weathered andesitic sandstone layer below the pumice material deposit that was considered have low stiffness. Another possibility causing of amplification was the topographical aspect involving sloping surface. The numerical model and laboratory tests clarified that the amplification effect on the area caused the collapse of the pumice material. Immediate liquefaction was considered as the mechanism of the landslide due to the combination of earthquake amplification effect and soil saturation by rainfall during earthquake.

Keywords: Landslide, earthquake, rainfall, cyclic triaxial test, ABAQUS
Two Cases of Landslide Signal Mining from Massive Earthquake-Induced Landslides

Tien-Chien Chen¹*, Ling-Qi Zhou², Wan-Jun Yang², Zong-Lian Li²

¹Associate Professor, Soil and Water Conservation, National Ping-Tech, Pingtung, Taiwan, ²Graduate Student, Soil and Water Conservation, National Ping-Tech, Pingtung, Taiwan

The short-time Fourier transform (STFT) is employed to identify two landslide-induced seismic signals in Chi-Chi earthquake. 7 seismic signals registered by strong ground motion station that contains the ground motion caused by two earthquake-induced landslides, Tsaoling rockslide and Jiufengershan landslide, are studied in the paper. Tsaoling rockslide involved a mass movement of 125 million cubic meters transported a 2 km long was triggered during 1999 Chi-Chi earthquake in central Taiwan. The seismic signal was recorded by the strong motion station about 700 m north of the landslide. 4 strong motion stations are close to landslide within 0.7 to 10 km. The Jiufengershan avalanche was the second largest landslide triggered by the Chi-Chi earthquake, mobilizing about 36 million cubic meters of rock and soil from a dip slope. The Jiufengershan avalanche transported a 42±65 m thick, 1.5 km long, 3 strong motion stations are surround the landslide within 5 to 8 km.

The study shows that the earthquake signal began with a band of low frequency waves from 0.1 to 20 Hz, and rose up to 40 Hz during the main shock; then, the high frequency decreased progressively from 20 to 10 Hz. For the case of Tsaoling landslide, the landslide seismic signals show a high frequency band up to 60 Hz at the rock block cracking period. And dramatic excitation occurs during the 37.5th to the 41th sec, this period is estimated as the rock block sliding. At last, the high frequency of 30 Hz registered at the 76th sec. which is likely to correspond to the sliding mass impacting on the old debris dam. Next, for the case of Jiufengershan, the main shock appears the frequency spectrum for 0.1 to 40 Hz because of strong ground stations was located very near the faults. However, after main shock period the seismic signal demonstrated a 20 to 40 Hz high frequency band with difference pattern to the earthquake wave.

Results suggest the significant frequency of 20-40 Hz found as in rockmass sliding. It can be distinguished clearly from the after main shock waves which have frequencies of less than 20 Hz, typically ranging between 0.1 Hz and 10 Hz. The high frequency signal will be attenuated highly, especially in vertical direction signals, as the increasing distance from landslide location to seismic station.

Keywords: Landslide signal, seismic wave, earthquake-induced landslide, short-time Fourier transform
The internal structure and stability of a rockslide dam induced by the 2008 Wenchuan (Mw7.9) earthquake, China

Gonghui Wang

Gonghui Wang

1Research Center on Landslides, Disaster Prevention Research Institute, Kyoto University
1Research Center on Landslides, Disaster Prevention Research Institute, Kyoto University

The internal structure of landslide dams plays a key role in their stability; however, it has not been much studied, probably due to the difficulty in obtaining information on internal structure in most cases. Here, we examined the shear-wave-velocity structure of a rockslide dam by a surface-wave technique called multichannel analysis of surface waves (MASW). During the 2008 Wenchuan earthquake (Mw7.9), more than 60,000 landslides were triggered and 800 landslide dams formed. Those dams with a high risk of collapse threatened rescue activities, and almost all of the large landslide dams were treated by digging a sluiceway immediately after the earthquake. Although the risk of collapse of many landslide dams was removed or lowered, not all of the countermeasures were based on well controlled methods. To analyze the internal of landslide dams to assist in carrying out reliable countermeasures, we made detailed investigations on some of the dams, and here describe one landslide dam that occurred in the Tianchi area. Grain-size analysis revealed that the displaced landslide materials experienced fragmentation and segregation during the long movement. The shear-wave-velocity profile of the dam revealed that the dam consisted of three facies (carapace, body and basal facies). The boundary between facies is distinct. The body facies had a greater shear-wave velocity (compared to those landslide dams that had suffered collapse failure during the construction of a sluiceway), showing that the dam consisted of more densely deposited materials. This kind of dam body had a lower permeability, capable of retarding seepage that triggers collapse failure of the dam body due to piping. Big blocks on the surface also enabled the dam body to have greater resistance to overflow and thus reducing possible collapse failure in the immediate aftermath of overtopping.

Keywords: Landslide dam, 2008 Wenchuan earthquake, internal structure, stability of landslide dam, grain size distribution

キーワード: Landslide dam, 2008 Wenchuan earthquake, internal structure, stability of landslide dam, grain size distribution
Recent earthquakes, the 2011 Tohoku earthquake, the 2009 Padang earthquake, the 2008 Wenchuan earthquake, the 2008 Iwate-Miyagi Inland earthquake, the 2005 northern Pakistan earthquake, and the 2005 Mid Niigata prefecture earthquake, gave us lessons about where and why large, catastrophic landslides are induced by earthquakes: those landslides had specific preparatory processes, mechanical or chemical, to be induced by earthquakes.

The 2011 Tohoku earthquake induced long run out catastrophic landslides in pyroclastic fall deposits with a sliding surface in halloysite-rich paleosol, which once was made by chemical weathering and has been resilified so that gibbsite changed to halloysite. Halloysite is very fragile against shaking and has been a major component of sliding surface materials of landslides during many earthquakes including the 2009 Padang earthquake. Dissolution of carbonate by groundwater was another chemical preparatory process of landslides induced by the 2008 Wenchuan earthquake.

Mechanical preparation for earthquake-induced large landslides is deep-seated gravitational slope deformation, which preceded many landslides involving the Daguanbao landslides by the Wenchuan earthquake and the Chiu-fen-erh-shan and the Tsaoling landslides during the Chi-Chi earthquake. Deep-seated gravitational slope deformation deteriorates rocks, which would become more susceptible to earthquake tremor. River erosion that undercut previous landslides, once collided to the opposite slope, is another important mechanical preparation for the landslides reactivated by earthquakes. There occurred many such catastrophic landslides during the Mid Niigata prefecture earthquake and the northern Pakistan earthquake.

Keywords: landslide, earthquake, pyroclastics, gravitational slope deformation, limestone
Implementing Triple Helix Concept into DRR: Geospatial Information for Landslide Susceptibility Assessment in Lombok

Yukni Arifianti¹*, Eko Agus Prasetyo², Jewgenij Torizin³, Michael Fuchs³

¹Geological Agency of Indonesia, ²School of Business & Management, Institute of Technology Bandung, ³BGR, German

The Triple Helix Concept (THC) is an innovation of relationships between 3 elements: Government, Academics, and Business. Disaster Risk Reduction is the concept and practice of reducing disaster risks through systematic efforts to analyse and manage the causal factors of disasters, including through reduced exposure to hazards, lessened vulnerability of people and property, wise management of land and the environment, and improved preparedness for adverse events (UNISDR). DRR is a multifaceted issue requiring involvement from several sectors. Government and universities (academic) took part by establishing the policies, plans and programs, providing expertise in the tools and methodology. Private sector (business) is taking the lead in the term of investments and planning ahead to protect industry and society from disasters, economic disruptions while ensuring business continuity.

Most of the disaster related data are spatial in nature involve some geographic component. For planning, monitoring and decision making; there is typically a need for geospatial data. Therefore, geospatial information could play an important role in susceptibility assessment. The development in Lombok grows rapidly so that human activity will trigger more geological hazards. One of these hazards is landslide. To cope with these hazards impact, study about more detailed geological hazard map, information on the landslide prone areas, and identification of area susceptible to landslide is recommended. There have been many progress made in landslide susceptibility assessment (LSA) studies, whereby much of this progress is based on the extensive use of geospatial information by using GIS (geographical information system) and Remote Sensing technique. It can ease LSA and provides information for DRR missions. It also provides a high efficiency and optimizes time resources. The resulting landslide susceptibility map will be the base for DRR activities on Lombok Island.

キーワード: triple helix, disaster risk reduction, geospatial information, landslide susceptibility assessment, Lombok
Keywords: triple helix, disaster risk reduction, geospatial information, landslide susceptibility assessment, Lombok
Undrained shear behavior of saturated loess at different concentrations of sodium chlorate solution

Fanyu Zhang\(^1\), Gonghui Wang\(^2\), Toshitaka Kamai\(^2\), Wenwu Chen\(^2\)

\(^1\)School of Civil Engineering and Mechanics, Lanzhou University, \(^2\)Research Center on Landslides Disaster Prevention Research Institute Kyoto University

A series of ring-shear tests was conducted on saturated loess to investigate the effects of NaCl concentration in pore water and desalinization on the shear behavior under undrained conditions. The loess samples taken from a loess area with frequent occurrence of landslide in China were saturated by de-aired water with different concentrations of NaCl solution, and then were sheared undrained. After that, the samples were retrieved, remoulded, re-set into the shear box, and re-saturated by passing through de-aired distilled water (such that the samples were desalinized), and then were sheared undrained again. Through comparing the undrained shear behavior, the effects of NaCl concentration in the pore-water and desalinization on the undrained shear behavior of loess were examined. The results showed that the variation of NaCl concentration in pore water can strongly affect the shear behavior of saturated loess. Both the peak shear strength and steady-state strength increased with increase of NaCl concentration until a certain value, after which they decreased with further increase of NaCl concentration. Meanwhile, the peak shear strength and steady-state strength of the retrieved samples recovered to those of the original sample, namely the salinization of loess is recoverable. These findings may be of practical importance to better understanding the repeated occurrence of some irrigation-induced loess landslides in China.
The Study on Landslide Disaster Mitigation and Management Using Numerical Analysis in Malaysia

KOAY SWEE PENG1*, Habibah LATEH1, Naoki SAKAI2, Yuichiro USUDA2, Suhaimi JAMALUDIN3, Tomofumi KOYAMA4

1Universiti Sains Malaysia, 2National Research Institute for Earth Science and Disaster Prevention, 3Public Works Department, Malaysia, 4Kyoto University

In Malaysia, recently, landslides happen occasionally and cause millions of losses every year. Government spends millions of Malaysian Ringgit on monitoring slope and slope failure measurement. NGO works together with local authority to monitor the slope to prevent casualty.

Setting site monitoring system in all slopes, with the extensometer, soil moisture probe, inclinometer and water gauge can monitor the movement of the soil in the slopes and predict the occurrence of slopes failure. However, installation monitoring system, in the whole country, to monitor and predict the failure of the slopes is very costly and almost impossible.

Here, we apply the numerical analysis on factor of safety F to predict the stability of the slope, which considers mechanism of resisting and driving forces in the slope. By comparing the observed data from monitoring site, history data and the result from the simulation using numerical analysis, a graph with a slope failure curve, by the rain data, can be determined. The increment of the accumulated rainfall data crossing the curve indicates the probability of the slope failure. Furthermore, the slope failure curve can also be diverted in the risk areas where have the almost same slope degree and soil properties.

Moreover, in our study, analyzing contour map, DEM data and history data by grading high, medium and low risk is proposed to determine the risk slope areas and narrow down surveying areas from the huge areas to the specified slope areas.

Data and information dissemination, by establishing quick response portal service, hazard map and providing training to the public, will alert the public on the risk of landslides. The awareness on the risk of slope failure among the public and installing the early warning system will minimize the loss due to slope failure.

Keywords: monitoring system, factor of safety, slope degree, soil properties, hazard map, public awareness
Debris flow geohazard is not uncommon in hilly tropical terrain of Malaysia but received little attention from geoscientists and engineers mainly because their occurrences are difficult to predict. The development of the new Terengganu Palace in the northern flank of the Chendering Hill has been considered to be facing with threat of debris flow geohazards because the palace compound is partly surrounded by steep and rugged hill slopes which are dissected by narrow and steep hanging valleys. The potential for debris flow geohazards in this area has been identified from aerial photographs studies and field mapping, where some of the hanging valley flows are converging towards the site of the Public Ceremonial Building. Evidences for past debris flows have been identified in five hanging valleys. Geological assessments have been carried out in these valleys to search for evidence of past debris flow incidents and to characterise the nature of the past debris flows deposits. From the five hanging valleys, only two (i.e. Valley 2 and Valley 3) are considered very high risk and ought to be installed with suitable mitigating structures. Flexible debris flow barriers rather than rigid concrete structures have been opted for Valley 2 and Valley 3 because of site accessibility and construction feasibility. To facilitate the engineering design of the flexible debris flow barriers, potential debris flow volume for both valleys have to be estimated on the first place. The estimation of the potential debris flow is done empirically by estimating the area of the source and the thickness of the potential source (i.e. the combined thickness of loose sediments, colluvial deposits, and overburden soils). The estimate is done by subdividing the map of the potential source area into equal cells using a grid, estimate the proportion of each cell that is covered by the deposits, and then sum. Thickness (Tm) of the loose sediments at source were measured and estimated directly in the field from the exposed outcrops along the stream channel. With the given area and thickness, volume of the bulk debris flow source can be calculated by multiplying the total area with the measured source thickness (Tm). This formula gives dry volume of debris sources in the valley catchment. Under extreme rainfall event, it is very unlikely that the entire volume of the debris in the catchment will turn into debris flow. Past experiences indicate that the likely situation is that only 20 percent to 30 percent of the debris sources will be sliding down entering the valley channel and mixed up with water to form the likely debris flow volume. In most wet debris flow events of tropical country, the amount of water made up about 40percent of the entire flow volume. Therefore, by taking these factors into consideration, the predicted debris flow volumes for both Valleys 2 and 3 can be reliably estimated to facilitate the engineering design of the debris flow barriers.

キーワード: Debris Flow, Geohazard, Geological Assessment, Volume Estimation, Hilly Tropical Terrain
Keywords: Debris Flow, Geohazard, Geological Assessment, Volume Estimation, Hilly Tropical Terrain
RAINFALL PHENOMENON TRIGGERING LANDSLIDE IN INDONESIA

Yunara Dasa Triana¹*, Imam A. Sadisun²
Yunara Dasa Triana¹*, Imam A. Sadisun²

¹Geological Agency of Indonesia, ²Institute of Technology Bandung

Landslides are common geological disasters in Indonesia, especially during rainy season. Geological conditions, climate, and human activities might cause landslide, however earthquake could trigger landslide but the most common landslide in Indonesia due to heavy rainfall.

Number of landslide commonly increases during rainy season, November - February, as recorded in 2005 to 2012. In 2010, rainfall was high since all the year long rained and the number of landslides higher than previous years. In 2010, landslides attained 199, higher than in 2009 (161), 2008 (139) and 2007 (101) as well as in 2011 (82) and 2012 (124).

A large landslide occurred in Dewata Tea Plantation on February, 23rd 2010, Bandung district, West Java province. It collapsed after high intensity rainfall which reached 675.9 mm during 15 days. Slope stability analysis in this area suggested that heavy rain could reduce the safety factor 22.75% of 1.257 (normal conditions) to be 0.971.

Keywords: landslide, rainfall, Dewata
The Development of self-potential tomography to estimate the ground water condition

Hiroshi Otsubo1*, Katsumi Hattori1, Tomohiro Yamazaki1, Adrin Tohari2, Khor Sugianti2

Graduate School of Science, Chiba University, 2LIPI, Indonesia

Landslides are one of the most severe natural disasters in the world and there are two types; rainfall induced landslides and landslides triggered by an earthquake. In this research, basic study on early warning system for landslides will be performed to understand rainfall-induced landslide process by hydrological and electromagnetic changes. The final goal of this research is to develop a simple technology for landslide monitoring/forecasting using self-potential method. The advantages of this method are lower cost and easier to set up than the hydrological approaches using pore pressure sensors. The laboratory experiments show that the self-potential variation has relationship with the water and soil displacements. But, we can not estimate the ground water condition by self-potential yet. So, in this study, we developed self-potential tomography to estimate the ground water condition.

Measured self-potential value under the ground and charge distribution to estimate is given by the Coulomb 4 law. Therefore, this is inverse problem. To solve the inverse problem, we adapt Phillips-Tikhonov regularization with Generalized Cross Validation (GCV). To evaluate the reconstructed charge distribution and investigate the relationship with the ground water condition, computational simulations and applications to practical data by using the sandbox experiment has been examined.

It is found that the developed algorithm is effective through numerical simulations. Results of application to sandbox experiments show good performance but there are some problems to solve.

The details will be given in our presentation.
The initiation and positive regulation of the catastrophic Siaolin landslide

Che-Ming Yang1,∗, Jia Jyun Dong1

1Graduate Institute of Applied Geology, National Central University, Taiwan (R.O.C.)

The extremely high intensity rainfall of the 2009 Typhoon Morakot triggered numerous landslides in South Taiwan. The Siaolin landslide is the most notorious one where the down slope Siaolin village suffered heavy casualties. The geological characteristics of the Siaolin landslide and the sequence of this catastrophic event have been studied extensively. Even though the kinematics of the Siaolin landslide was depicted quantitatively via numerical simulation, the initiation and mechanisms associated with rapid moving of this landslide is poorly understood. A simplified rigid wedge model is accordingly used to study the initiation of the Siaolin landslide. The north plane of the wedge is assumed the bedding plane overlaid the matrix-supported colluvium whereas the south sliding surface is identified as a high angle fault. Besides, the crown of the Siaolin landslide is set as a tension crack on the eastern side of the wedge. The colluvium and fault gouge were collected from the Siaolin landslide site and a series of low-to high-velocity rotary shear tests was performed. The peak friction angle of the colluvium and the fault gouge are 22.8° and 18.3° under a velocity of 3.3 micron/sec. The factor of safety of the wedge can be calculated using a commercial wedge analysis tool. The result shows the wedge failure happened (FS < 1) when the average water table attained 96% of the slope height. This result corresponds with the heavy rainfall triggered Siaolin case. Remarkably, the fault gouge, which composed of mainly angular and planar particles, tends to contract during shearing. It implies no normal stress increment provided during sliding and excess pore pressure could be generated. The shear behavior of the fault gouge contributes the positive regulation mechanism and the Siaolin wedge is apt to accelerate after the sliding initiated. Furthermore, the shear tests of the fault gouge and colluvium show the strength dropped substantially after peak under a high shear velocity (1.3 m/sec) condition. The steady state friction angles of the colluvium and fault gouge are 5.7° and 10.5°. With an increasing velocity after the initiation of landsliding triggered by the critical uplift water force, the rapid moving of the Siaolin catastrophic landslide is inevitable.

Keywords: Catastrophic landslide, Low- to high-velocity rotary shear, Friction coefficient, Wedge failure, Excess pore pressure

キーワード: Catastrophic landslide, Low- to high-velocity rotary shear, Friction coefficient, Wedge failure, Excess pore pressure
A catastrophic rockslide-debris avalanche at Zhaotong, Yunnan, China: description and dynamic analysis

Aiguo Xing 1*, Gonghui Wang 2

1 Shanghai Jiao Tong University, 2 DPRI, Kyoto University

At about 6:00 p.m., on 23rd September 1991, a catastrophic rockslide-debris avalanche (volume: 18 million cubic meters) occurred in the Touzhai valley approximately 30 km northeast of Zhaotong city in northeast Yunnan, China. The displaced mass travelled over 3.65 km down the valley in only a few minutes and finally part of the debris mass plunged into the Pan River. The landslide filled the valley with basalt debris to an average depth of 40 m. This paper introduces the general site conditions and then discusses the relevant site conditions favorable to form the rock avalanche. Based on field observations and witness interviews, the sequence of the rock avalanche was analyzed, and a detailed characterization from initiation to final deposition was presented. Finally, we use the DAN model to re-construct the dynamics of the rock avalanche.

Keywords: Rockslide, Debris avalanche, Runout behavior, Dynamic modeling
多雪条件下で発生した長距離移動する地すべりの挙動：新潟県上越地方の国川地すべりの事例

Movement of a long-runout landslide in deep snow: A case of the Kokugawa landslide in the Joetsu area, Niigata, Japan

木村 誠*, 畠田 和弘†, 丸山 清輝*, 野呂 智之

Takashi Kimura*, Kazuhiro Hatada*, Kiyoteru Maruyama*, Tomoyuki Noro*

*独立行政法人土木研究所 雪崩・地すべり研究センター

Snow Avalanche and Landslide Research Center, Public Works Research Institute

2012年3月7日、新潟県上越地方に位置する東頸城丘陵の高田平野に接する緩斜面（勾配10 - 20°）で融雪に起因した地すべり（以下、国川地すべり）が発生した。地すべり土塊は頭部滑落崖から750mにわたって移動し、家庭11棟を破壊した。地すべりの発生日は融雪期初期にあたり、発生当時、現地には約2mの積雪が残っていた。そのため、地すべり土塊が長距離移動した原因として、土塊が積雪上に移動したために、土塊底面の摩擦抵抗が小さくなったことが考えられる。この仮説を検証するため、本報告では、現地調査と航空写真およびレーザーブロファイリングの判読結果に基づいて国川地すべりの詳細な特徴を示す。そして、積雪が地すべり土塊の挙動にどのように関与したかを考察する。

国川地すべりが発生した斜面の地質は新第三紀の泥岩と前期更新世の礫岩から構成されているが、地表は過去の地すべり堆積土と1980年代に行われた砂利採取時の砂土を含む軟弱な土層が7 - 8mの厚さで覆っている。地すべりの崩壊の規模は長さ500m、幅150mであり、発生した土砂の総量は750,000m3と推定された。停止時の地すべりの見通し角は10°（H/L=0.15）と、土石流や大規模な地すべりと同程度に小さな値をとった。このことから、国川地すべりの移動距離は、同程度の規模の地すべりに比べて著しく長かったとみなせる。

移動土塊の外縁部は地すべり滑落崖頭部より350 - 500m下方の斜面脚部で周辺に拡散し、堆積したが、地すべり土塊の中心部は、平坦な水田（1・3号）に到達した後も、周辺に拡散することなく高速（およそ15m/h）で移動を続けた。

水田上にあった積雪は移動土塊によって押され、積雪表面より数メートルの高さに隆起した。この隆起した積雪は移動土塊の周辺に幅5 - 20mのモーレン状の雪堆を形成した。雪堆を含む地すべり土塊は10日経た斜面脚部より250m離れた家屋に到達し、それらの家屋を破壊した後で停止した。土塊側方の雪堆上に設置した観測点を繰り返し測定した結果、水田上に堆積した土塊は家屋に到達した後も9日間以上にわたって雪塊を押しながら徐々に側方に拡がっていたことがわかった。

水田上に堆積した土塊の右側部には長さ180mの側方リッジが形成されていた。この側方リッジと雪壁との境界部では、リッジの側壁面に顕著な割れが認められた。側方リッジの底部に積雪層や土砂が混合した層は認められなかった。また、リッジの底部に接する元雪面に著しい騒乱を受けていなかった。その一方で、雪塊中央部で推定されたポーリング・コアと土塊を横断するように掘られたトレンドの層では、水田の粘土層が約1.0mの厚さで消滅しており、移動土塊によって地表面が浸食されていたことがわかった。したがって、この側方リッジは雪塊の形成によって崩壊側の側方への拡散と堆積が抑えられたことと元雪面を浸食した土塊中央部が陥没したことの2つのメカニズムによって形成されたと考えられる。

国川地すべりの移動土塊が積雪上を移動した根拠となるものは見つけられなかった。むしろ、上述の結果からは圧密されたモーレン状の雪堆による土塊の拡散の現象が長距離移動の原因となったと考えられる。国川地すべりの挙動は、雪堆による規模が地すべりの移動に大きな影響を与えることを示唆している。多雪地域における地すべりの到達距離を正確に予測し、被害を軽減するためには、この影響を十分考慮する必要がある。

キーワード: 地すべり, 長距離移動, 多雪条件, 側方リッジ

Keywords: landslide, long-runout, deep snow condition, lateral ridge
Using LiDAR Derived Digital Terrain Model to Identify Deep Seated Landslides in Mountainous Areas of Taiwan

Ching-Weei Lin1,*, Chih-Ming Tseng2, Li-Yuan Fei3

1Department of Earth sciences, National Cheng Kung University, 2Department of Land Management \& Development, Chang Jung Christian University, 3Central Geological Survey, MOEA, Taiwan

In August 2009, Typhoon Morakot triggered thousands of landslides and debris flows, and more than 600 people were dead or missing, and the economic loss was estimated at hundreds million of USD. Among these landslides, large deep seated landslides are critical and deserve attention, since they are evolve in destructive failures. For example, one deep seated landslide, the Hsiaolin landslide, with an area of about 250 ha, buried the entire village of Hsiaolin in Kaohsiung County causing 397 causalities, the disappearance of 53 others, and buried over 100 houses (Lin et al., 2011: Tsou2011). After the catastrophic Hsiaolin landslide, the recognition of areas where deep seated landslides may occur become a critical issue for landslide hazard mitigation for government and for peoples living in mountain area of Taiwan.

In 2010, Central Geology Survey of Taiwan initiates a project to establish 1 meter resolution LiDAR derived Digital Terrain Model through the island for helping recognition of potential geohazards in mountainous area. LiDAR capability to detect the bare ground elevation data also in forested areas, it was possible to recognize in detail landslide features also in remote regions difficult to access. In this paper we illustrate the high resolution LiDAR DEM is a very powerful tool to identify deep seated landslides in forest area comparing to the traditional interpretation technique by using stereo aerial photos.

According to landslide features such as arcuate crown escarpments, trenches, multiple ridges, down slope scarps, up slope scarps, transverse scarps, over hundreds of deep seated landslides with an area larger than 10 ha have been recognized in last two years by using inclination shading images and slope maps constructing from 1 m mesh Digital Elevation Model (DEM). Among these landslides, over 40 landslides were confirmed and investigated in the field. In this study, some of field examples are used to illustrate the efficiency of using LiDAR derived DEM in study of deep seated landslides in heavy forest areas.

Keywords: LiDAR, deep seated landslide, digital terrain model
Large scale gravitational slope deformation related to fluvial dissection of a paleosurface

Ching-Ying Tsou 1,*, Masahiro Chigira 1, Yuki Matsushi 1, Su-Chin Chen 2

1 Disaster Prevention Research Institute, Kyoto University, Uji, Japan
2 Department of Soil and Water Conservation, National Chung Hsing University, Taichung, Taiwan

Understanding the processes that lead to gravitational slope deformation and subsequent landslides can provide information about evolving landscapes. In order to shed lights on this topic, we conduct analyses of landscape by geological and geomorphological field investigations, DEM analysis, high-resolution satellite imagery interpretation in the upstream Dahan River and the Chishan River catchments in tectonically active mountain range in Taiwan. We completed inventory of gravitational slope deformation. Mapping was performed by visual interpretation of high-resolution images and/or field investigations and based on precursory topographic features. The precursory topographic features include scarplet or landslide scarp and hummocky surface. The distribution of the gravitational slope deformations shows that most of the gravitational slope deformations occur on slopes at or above the convex slope breaks bounding rims of low-relief paleosurface remnants in high altitudes. The analysis of longitudinal river profile shows knickpoint cluster at the edge of the low relief remnants, indicating the low-relief paleosurfaces have been eroded by retreating of knickpoints in relation to river rejuvenation in response to base-level lowering associated with tectonic uplift of the areas. Corresponding to the incision, the low-relief paleosurfaces can tend to gravitational unstable by undercutting and destabilizing the toes of adjacent hillslopes. Some of these unstable slopes led to catastrophic deep-seated landslides during heavy rainstorms with significant volume of landslide masses, shaping landscape relief. Mass rock creep structures within the source areas of the landslides evident the long-term slope development. Besides, these larger landslides are more effective in high altitudinal zone. This suggests that the larger landslide, which might be controlled by the local relief, is one of the major geomorphic processes for the long-term landscape evolution in tectonically active mountains. We include also chronological development of the landscape in the upstream Dahan River catchment. The results might be useful for future simulation of knickpoint propagation and its effects on paleosurface dissection and for quantitative assessment of landslide hazard disaster mitigation.

Keywords: gravitational slope deformation, fluvial dissection, paleosurface
Large landslides frequently occur in pelitic schist areas, with the structure of the failing mass often being separated into smaller blocks. However, the reasons why landslides occur so readily in pelitic schist, and why their morphology separates into minor blocks, are not clear.

The texture of pelitic schist is strongly anisotropic, which means that it typically has low strength. In addition, landslides commonly occur on dip slopes in pelitic schist areas. These facts suggest that preferable conditions for landslide are related to schistosity within the pelitic schist.

In order to clarify the ways in which the mechanical behavior of pelitic schist controls landslide occurrence, we analyzed the microscopic texture and composition of pelitic schist, and then directly measured the shear behavior of analog materials of pelitic schist using a direct shear machine. Pelitic schist consists of alternating thin black layers, abundant in pyrite and graphite grains, and quartz-rich layers. The black layers are typically weaker than the quartz-rich layers, as has been tested using an Equotip rebound tester. Relatively thick, continuous black layers were found to have low hardness values. So unevenly distributed graphite layers are likely to determine the potential location of microscopic slip in a rock mass. To investigate the behavior of these systems we generated analog materials formed from layers made of artificial graphite sheets, to simulate the black layers, and plaster of Paris to simulate the quartz-rich layers. These systems were sheared parallel to the graphite layer at a constant rate in the direct shear machine at Durham University, allowing measurement of the shear strength. The results suggest that both the peak and the residual frictional strength between a graphite sheet and the plaster surface were about half of the strength of a joint within the plaster. Analog materials having continuous graphite sheets failed at a low shear strength. These results suggest that graphite layers likely reduce strength of the rock, and continuous graphite layers are likely important to determine slips in the rock mass.

Keywords: Landslide, Deep-Seated Gravitational Slope Deformations, Pelitic schist, Sliding zones of landslide, Graphite
Analysis of landslide monitoring using an e-GPS system and multi-antenna GPS technology

Ta-Kang Yeh¹, Hsin-Chang Liu²
Ta-Kang Yeh¹*, Hsin-Chang Liu²

¹Department of Real Estate and Built Environment, National Taipei University, ²Engineering and Environment Geophysics Laboratory, Chien Hsin University

Based on GPS technology, this study monitored the movement of the landslide that impacted Taiwan’s Formosa Freeway. Two monitoring systems and two data-processing software programs were employed. Auxiliary data were obtained from the GPS, raingauges, inclinometers, and water table meters for landslide analysis. The goal of multi-sensor monitoring was to construct an automatic early warning system for driver safety. Analytical results indicate that the landslide moved on average 1 cm/month in the southeast direction; that is, it moved slowly toward the Formosa Freeway, thereby posing a potential safety hazard for drivers. The positioning precision of the multi-antenna GPS (0.18, 0.25, and 0.57 cm in the north, east and vertical directions, respectively) was better than that of static relative positioning (0.29, 0.44 and 1.01 cm) and that of e-GPS technology (1.69, 1.35 and 2.45 cm).

Keywords: e-GPS, multi-antenna GPS, landslide, Taiwan
A Possible Slope Failure monitored by GPS Ranging in Tamagusuku Village, Southern Region of Okinawa Island

松本 剛
Takeshi Matsumoto

琉球大学理学部
University of the Ryukyus

沖縄県南部、玉城（たまぐすく）での国土地理院によるGPS観測点の変動状況より、この地点が緩やかな地りを起こしている可能性、また、このことが降雨量に連動した可能性について、最新の記録をもとに考察を行う。
伏野地すべり地における地震時の間隙水圧変動
Fluctuations in pore-water pressures triggered by earthquakes at the Busuno landslide

大沢光1*, 岡本 隆2, 松浦 純生3, 阿部 和時4
Hikaru Osawa1*, Takashi Okamoto2, Sumio Matsuura3, Kazutoki Abe4

1. 日本大学大学院生物資源科学研究科, 2. 森林総合研究所, 3. 京都大学防災研究科, 4. 日本大学生物資源科学部

1. 背景
近年、わが国において地すべり災害を引き起こした地震として、新潟県中越地震（2004年, M6.8）や新潟県中越沖地震（2007年, M6.8）, 岩手・宮城内陸地震（2008年, M7.2）などが報告されている。地震によってもれ透水性の地すべり地の地盤がせん断・圧縮応力を繰り返し受けると、過剰間隙水圧と想定される水圧変動が観測されることがあり、これに対する斜面の不安定化が指摘されている。

2. 観測・解析方法
筆者らは地すべり地における地震の動特性と間隙水圧変動の関係について、現地観測データをもとに解析を試みた。

HDS06-P03 会場: コンベンションホール 時間: 5月 23 日 18:15-19:30

18:15-19:30

3. 結果と考察
a>地震時間隙水圧変動から、地震を契機に間隙水圧がスパイク状に変動（過剰間隙水圧）していることがわかった。そして、その変動方向は上昇層と下降層にわかれ、間隙水圧の減衰曲線より推定した間隙水圧変動値は、EQ3時に最大14.2 kPa, 最低3.3 kPaとなった。

b>地すべり地における地震時間隙水圧は同時に観測されたのはEQ3時、特にEQ3,3に注目する。EQ3時間隙水圧変動は南北成分・東西成分に比べて上下成分が低いことが著者である。EQ3时投射成分に同様の傾向を示し、南北・東西成分は周期的に変動しており、EQ3時間隙水圧変動値は0.05-1秒の間の増減がみられた。

3. 結果と考察
a>地震時の間隙水圧変動から、地震を契機に間隙水圧がスパイク状に変動（過剰間隙水圧）していることがわかった。そして、その変動方向は上昇層と下降層にわかれ、間隙水圧の減衰曲線より推定した間隙水圧変動値は、EQ3時に最大14.2 kPa, 最低3.3 kPaとなった。

b> 地すべり地における地震時間隙水圧は同時に観測されたのはEQ3時、特にEQ3,3に注目する。EQ3時間隙水圧変動は南北成分・東西成分に比べて上下成分が低いことが著者である。EQ3时投射成分に同様の傾向を示し、南北・東西成分は周期的に変動しており、EQ3時間隙水圧変動値は0.05-1秒の間の増減がみられた。

3. 結果と考察
a>地震時の間隙水圧変動から、地震を契機に間隙水圧がスパイク状に変動（過剰間隙水圧）していることがわかった。そして、その変動方向は上昇層と下降層にわかれ、間隙水圧の減衰曲線より推定した間隙水圧変動値は、EQ3時に最大14.2 kPa, 最低3.3 kPaとなった。

b> 地すべり地における地震時間隙水圧は同時に観測されたのはEQ3時、特にEQ3,3に注目する。EQ3時間隙水圧変動は南北成分・東西成分に比べて上下成分が低いことが著者である。EQ3时投射成分に同様の傾向を示し、南北・東西成分は周期的に変動しており、EQ3時間隙水圧変動値は0.05-1秒の間の増減がみられた。

3. 結果と考察
a>地震時の間隙水圧変動から、地震を契機に間隙水圧がスパイク状に変動（過剰間隙水圧）していることがわかった。そして、その変動方向は上昇層と下降層にわかれ、間隙水圧の減衰曲線より推定した間隙水圧変動値は、EQ3時に最大14.2 kPa, 最低3.3 kPaとなった。

b> 地すべり地における地震時間隙水圧は同時に観測されたのはEQ3時、特にEQ3,3に注目する。EQ3時間隙水圧変動は南北成分・東西成分に比べて上下成分が低いことが著者である。EQ3时投射成分に同様の傾向を示し、南北・東西成分は周期的に変動しており、EQ3時間隙水圧変動値は0.05-1秒の間の増減がみられた。
引用文献
岡本隆・松浦純生・浅野志穂・竹内美次 (2006); 活動中の地すべり地における中越地震発生時の移動および間隙水圧変動特性，日本地すべり学会誌，Vol.43，No.1，pp.20-26。
司宏俊・翠川三郎 (1999); 断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式，日本建築学会構造形論文集，第 523 号，pp.63-70。

キーワード: 地震動，過剰間隙水圧，最大加速度
Keywords: seismic motions, excess pore water pressure, peak ground acceleration
An extreme rainfall affected Kyusuh Island of western Japan in July and induced hundreds of fluidized landslides claiming tens of casualties. Especially on the Aso volcano caldera cliff, a number of extremely rapid debris slide - debris flows were induced and affected the downslope communities. Measured trigger precipitation was recorded by the nearby ground-based station of the AMeDAS network (Automated Meteorological Data Acquisition System) as about 80 mm/h for consecutive 4 hours. Analysis of Radar Rain-gauge Analyzed Precipitation operated by the Japan Meteorological Agency showed landslide affected area almost coincided with the ones of heavier precipitation. Most of the landslides were initiated on the boundary of strongly weathered soils, which used to be new volcanic accretion materials. Outstanding features of these landslides are: (1) This area had been affected by similar heavy rainfall decades ago, however, again a number of landslides took place in the nearby past scars; (2) Many of the soil slide bodies are shallow less than 5 meters deep and possibly immediately transformed into debris flows or mud flows and traveled long distance to reach the downslope communities; (3) Visual observation of the sources showed the high possibility that some of the slides were apparently induced by liquefaction. Similar cases were reported of past 2 landslide disasters in Japan. This strongly suggests that excessive rainfall can trigger numerous mud flows of unexpected reach. We conducted close field study at a typical soil slide - mud flow site. It originally initiated as debris or soil slide on a thin steep bedding plane of about 34 degrees consisting of coarser accretion materials. Needle penetration test showed comparatively weaker strength in the layer. It is underlain by a layer of finer materials. Such a higher permeability contrast could contribute to higher susceptibility of excess pore pressure generation. We took soil samples from the vicinity of sliding surface and conducted pore-pressure-controlled ring shear test. We increased pore pressure at constant rate until failure after applying normal/shear stresses of certain ratio representing the steepness of the sliding surface for the normally consolidated (of 100 kPa) specimen prepared by disturbed samples. Immediately after failure took place, we observed quick and large drop of shear resistance in a few seconds. Although the applied normal stress of this test is larger than the actual one, this implied strongly the occurrence of the sliding surface liquefaction. The resultant shear resistance was so small and it can explain the mechanism of those long run-out and low apparent friction angle of those landslides.

Keywords: extreme rainfall, landslide, debris flow, excess pore pressure, caldera cliff
Investigation of landslides on inner slope of Mt. Aso caldera triggered by heavy rainfall in Northern Kyushu in July 2012

Hufeng Yang1∗, Fawu Wang1, Tomokazu Sonoyama1, Yasuhiro Mitani1
Hufeng Yang1∗, Fawu Wang1, Tomokazu Sonoyama1, Yasuhiro Mitani1

1Research Center on Natural Disaster Reduction, Shimane University

Mt. Aso caldera is one of the largest calderas in the world. It is also known for typhoons and heavy rainfall during the rainy season. These relatively annual events have triggered shallow landslides and debris flows, which have caused severe casualties, destroyed properties and displaced local city dwellers. From July 11 to 14, 2012, an intensive rain fell on the Northern Kyushu during rainy season, a value higher than the highest local precipitation recorded in the last decade. This high precipitation triggered shallow landslides, especially around the rim of the caldera, which affected many villages and local settlers. Detailed field investigation was conducted to study the motion mechanism of shallow slope failures triggered by the heavy rainfall. A representative site, which is located in Ichinomiya, Aso-gun, Kumamoto Prefecture was selected for this study. Several field geotechnical tests were carried out in the landslide site. Portable cone penetration tests were conducted to evaluate the nature and degree of consolidation of the sediments which are mainly composed of tephra and pyroclastics; in-situ permeability tests were conducted with variations in depth of hand-drilled bore holes so as to measure rainfall infiltration rate. Representative soil samples were collected from different layers of the main scarp for particle size distribution analysis, shear strength tests, and other laboratory soil strength analyses. Results obtained from detailed field and laboratory investigations carried out in the area show that the main factors contributing to the occurrence of shallow landslides and debris flows are incessant rainfall, surficial drainage and runoffs, topography, geologic and soil strength properties. These factors are enhanced by the interplay between the steep wall of the caldera (over 30 degrees) and high precipitation coupled with high number of irregular cracks that acts as conduits for easy infiltration to subsurface drainage system. Another process that could have affected the slope stability could be from steady undercutting of the slope toe by strong surface floods, which overtime reduces the shear strength of the material leading to shallow sliding failure.

キーワード: Landslide, Rainfall, Mt. Aso caldera, Northern Kyushu
Keywords: Landslide, Rainfall, Mt. Aso caldera, Northern Kyushu
Study on characteristics of ground vibration during times of flooding in mountainous rivers

Nagazumi Takezawa 1*, YAMAKOSHI Takao 2, ISHIZUKA Tadanori 3, NAKAYA Hiroaki 4

1Public Works Research Institutes, 2Public Works Research Institutes, 3Public Works Research Institutes, 4Ministry of Land, Infrastructure, Transport and Tourism

Keywords: Vibration sensor, Flood, Discharge, Amplitude of velocity, sediment movement phenomenon
Simulations of seismic signals induced by landslides by numerical coupling of PFC and FLAC

Zheng-yi Feng¹, Cyun-Fu Lin¹, Pei-hsun Tsai²

¹Department of Soil and Water Conservation, National Chung Hsing University, Taichung 402, Taiwan, ²Department of Construction Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

We developed a two-dimensional numerical coupling approach using the Particle Flow Code (PFC) and Fast Lagrangian Analysis of Continua (FLAC) code to simulate the flow process of landslides and rock avalanches. We used the Xiaolin rock avalanche as a case study. The sliding of the rock fragments was simulated by PFC. When the rock fragments impact on the top boundary of FLAC, forces and displacements of the boundary grids will be transmitted between the two codes. We assigned monitoring locations in the coupled numerical model to record the seismic signals induced by the simulated rock avalanche. The time-frequency spectrograms of the seismic signals were analyzed using Hilbert-Huang transform (HHT) for examining the seismic characteristics. The simulated results were compared with the seismic signals recorded during the landslide from a broadband seismic station, SGSB, which is 11.4 km away from the Xiaolin landslide site.

Keywords: PFC, FLAC, HHT, Xiaolin, landslide
Variations of topographic feature of a Major Typhoon

Chih-Ming Tseng1,*, Ching-Weei Lin2, Paolo Tarolli3, Giancarlo Dalla Fontana3

1Department of Land Management and Development, Chang Jung Christian University, Taiwan, 2Department of Earth Sciences, National Cheng Kung University, Taiwan, 3Department of Land and Agroforest Environments, University of Padova, Italy

In August 2009, in Taiwan, Typhoon Morakot with a maximum rainfall of over 2,900 mm, induced over 23,000 landslides in mountainous area throughout southern Taiwan. One large scale deep-seated landslide, the Hsiaolin landslide, with an area of about 250 ha, buried the entire village causing 397 casualties, the disappearance of 53 people, and the destruction of over 100 houses (Lin et al., 2011; Tsou et al., 2011). The LiDAR-derived 2m resolution DEMs before and after Typhoon Morakot was utilized in this study to perform the relation between slope and contributing area. Montgomery and Foufoula-Georgiou (1993) suggested a partitioning of the landscape into drainage and slope regimes that include hillslopes (Region A), unchanneled valleys (Region B), debris flow-dominated channels (Region C), and alluvial channels (Region D). The comparison of slope-area relationship of Hsiaolin village before and after Typhoon Morakot indicates, no matter pre or post typhoon, the slope?area figure shows four regions with different scaling responses. However, there are remarkable for the significantly variation of scaling pattern in slope-area diagram after the deep-seated landslide. Sediment mass produced by deep-seated landslide with approximately 2.7x107 m3 (Wu et al., 2011) depleted from hillslope, nearly 90m deepest failure depth resulted in outward extend of upstream catchment boundary. Huge amount of sediment mass was transported downward also formed significant deposition in debris flow channel and alluvial channel, respectively. These phenomenon also reflects in slope-area graph, contributing area at parting between Region I and Region II migrate from 20 m2 to 50 m2, that means hillslope length become longer due to outward development of upstream catchment boundary. The local slope in debris flow channel (Region C) and alluvial channel (Region D) both become gentler after this catastrophic landslide. The analysis only after an intense event, really represent a strategic tool for a directly quantification of the processes that affected and significantly changed the earth surface.

Keywords: DTM, High resolution topography, LiDAR, Slope?area relation
Visualization of precursory features of Typhoon-induced Shiaolin landslide by ALOS pan-sharpened stereoscopic imagery

Ching-Ying Tsou1*, Masahiro Chigira1, Ryuzo Yokoyama2, Michio Sirasawa2

1 Disaster Prevention Research Institute, Kyoto University, 2 Yokoyama Geo-Spatial Information Laboratory

Precursory topographic features of gravitational slope deformation may provide a clue in predicting potential sites of catastrophic landslides. Visual photo-interpretation of high-resolution images such as optical satellite imagery and aerial photographs together with field survey remains the most used method to recognize the precursory topographic features and locate gravitational slope deformation. Here, we utilized ALOS pan-sharpened stereoscopic imagery of anaglyph to recognize the precursory topographic features before Typhoon Morakot-induced catastrophic Shiaolin landslide in southern Taiwan on 9 August 2009. Developed by the coauthors, Ryuzo Yokoyama and Michio Sirasawa, the ALOS pan-sharpened stereoscopic imagery is generated from the data of PRISM (a panchromatic stereo mapping sensor of 2.5 m resolution) and AVNIR-2 (a visible and near infrared sensor of 10 m resolution). We compared it with underlying geological structure that was exposed by the catastrophic landslide and was investigated after the event. The results indicate that the source area had the precursory topographic features: irregularly shaped bulges and depressions in many locations, suggesting the slope had been gravitational deformed beforehand. At least four of the locations were confirmed that the precursory topographic features were related to gravitationally deformed beds of alternating beds of sandstone and shale on a dip slope. The deformed beds were buckled and result in undulating beds or asymmetrical folds near the exposed ground surface. Consequently, the precursory topographic features might reflect the internal geological structures of the deformed slope. Besides, several slopes near the Shiaolin landslide site also appear as gravitational deformed slopes and can be characterized as potential sites of large and catastrophic landslides.

Keywords: ALOS pan-sharpened stereoscopic imagery, gravitational slope deformation, catastrophic landslide, precursory topographic feature
Experimental examinations of the soil-water characteristics of a loess soil, China

Yao Jiang\(^1\)*, Wenwu CHEN\(^2\), Guanping SUN\(^2\), Gonghui Wang\(^1\), Toshitaka KAMAI\(^1\)

\(^1\)Research Center on Landslides, DPRI, Kyoto University, \(^2\)School of Civil Engineering and Mechanics, Lanzhou University

In Northwest of China, many loess landslides have occurred without obvious triggering factors (i.e., rainfall, earthquake, etc). These landslides have loess that is desiccated from the ground surface to a considerable depth, and pore-water pressure at shallow depths is generally negative with respect to atmospheric pressure. To understand and analyze the pore-water pressure distribution of these slopes and then provide evidence for their stability analysis subjected to matric suction, it is essential to study soil-water characteristics. Furthermore, the soil-water characteristic curve (SWCC), representing the relationship between volumetric water content and matric suction, has been developed to interpret and predict the mechanical behaviors of unsaturated slopes. In this study, A set of experimental trials were carried out to examine the influences of initial dry density, moulding water content and particle size fraction upon the soil-water characteristics of loess soil in Northwestern China. The experimental results were obtained by using a conventional volumetric pressure-plate extractor. The results indicated that volumetric water content had a monotone-decreasing nonlinear relationship with matric suction for all loess specimens. However, the dry density had considerable influence on soil-water characteristics. When the dry density increases, the air-entry value increases and rate of desorption decreases. Moreover, by comparing the soil-water characteristics of the specimens that have the same dry density but were compacted at different initial water contents, it was found that the initial moulding water content could affect soil structure (aggregation) significantly. Higher initial water content specimens had a higher air-entry value and a lower rate of desorption. The specimens with different particle size fractions appeared to exhibit distinct soil-water characteristics. A coarse-grained specimen had a lower air-entry value and higher rate of desorption compared with a fine-grained specimen.

キーワード: loess landslide, soil-water characteristic, dry density, water content, particle size fraction

Keywords: loess landslide, soil-water characteristic, dry density, water content, particle size fraction
On July 13, 2012, a huge natural dam was formed by the large scale landslide in the Way Ela River, Ambon, Maluku, Indonesia. Its height is about 150 meter. It still remains and its water level keeps high. In the downstream of the natural dam, there is a village with populations of 5,000, which is exposed to the catastrophe in case of the collapse of the natural dam. In order to prevent the damage from collapse of natural dam, Indonesian government has been promoting the countermeasures such as constructing a spillway, and establishing the early warning system. We have investigated the site of the Way Ela River three times and collected information about the natural dam. Here, we promptly report the interim results about the natural dam based on the information obtained so far.

Keywords: natural dam, Indonesia, landslide
湿潤亜熱帯気候下のバッドランドにおける泥岩の急速風化・侵食のメカニズム: 台湾南西部鮮新・更新統泥岩地域の例
Rapid weathering and erosion mechanisms of mudstone in a badland under the humid, subtropical climate: A case study in a

樫口 衡平 1*, 千木良 雅弘 1, 李 德河 2
Kohei Higuchi1*, Masahiro Chigira1, LEE, Der-Her2

1 京都大学防災研究所, 2 台湾国立成功大学
1 Disaster Prevention Research Institute, Kyoto University, 2 National Cheng Kung University

台湾南西部に於て、乾季と雨季の明瞭な亜熱帯季節風気候の下で、鮮新・更新統泥岩地域に発達した尾根とガリに特徴づけられる無植生のバッドランドが形成されている。この泥岩は、自然含水状態で一軸圧縮強度がおよそ 5〜10 MPa と硬質であるが、急速に侵食され、バッドランドを形成し、ともに種々の環境問題を引き起こしている。筆者らは、現地観測及び採取試料の分析によって、この泥岩の急速な風化・侵食メカニズムを明らかにすることを試みた。バッドランドの斜面に設置した侵食ビンから、侵食速度は平均で年間 9 cm y^{-1} に及び、北アメリカ西部、イタリア南部、スペイン南部の半乾燥・乾燥地域のバッドランドに比べ極めて速いことが判明した。また、斜面表層部の水分と塩分濃度の年差にわたる観察と、雨季（7月）と乾季（4月）の斜面から採取されたポーリングコア試料の物理的性質の分析から、乾季と雨季の繰り返しに伴う風化・侵食過程について検討した。乾季には、斜面表層約 20 cm 以内は乾燥し含水率を減じると同時に、強度を増した。乾季の乾燥による蒸散が認められ、乾燥域は呼吸が高まり、間隙水の塩分濃度も高くなり、その後の連続降雨で塩分濃度が徐々に希釈されるに従って蒸散し、低いかさ密度、高い間隙比となった。乾季の終わりから雨季の始まるには、表層约 10 cm 以内は含水率が高く、間隙水の塩分濃度も高いため、その後の連続降雨で塩分濃度が徐々に希釈されるとともに膨潤し、低いかさ密度、高い間隙比となった。この低かさ密度と高い間隙比は、泥岩内部の水の化学的浸透作用によって引き起こされたと解釈された。その結果、この表層部は著しく強度を低下させ、侵食された。雨季の後期には深さ 15 cm 以内の岩石はほぼ飽和したが、侵食が発生した後、乾季に入ると斜面表面は再び乾燥し、上述の現象が繰り返された。

キーワード: バッドランド, 泥岩, 風化, 侵食, スレーキング
Keywords: Badlands, Mudstone, Weathering, Erosion, Slaking
Model test of the submarine landslide impact forces acting on cables and the motion mechanism

Yohei Kuwada1*, WANG, Fawu1, HONDA, mitsuki1, SONOYAMA, tomokazu1

1 Shimane University, Department of Geoscience

Communication cables, which cross the oceans between continents all over the world, are sometimes damaged due to the occurrence and motion of submarine landslides, causing interruption of data transmission, and even of international communications. When cable failure occurs, the economic loss is vast for cable restoration coupled with temporary or permanent breach in information transmission. Submarine landslides are usually triggered by many factors which include rapid sedimentation, retrogressive failure, earthquake and tectonic activity, gas hydrate dissociation and wave loading. These activities cause severe damage to transocean fibre optic cables. Direct observation of this phenomenon is still not enough because these events occur deep beneath the sea surface, and direct observation of submarine landslide would be extremely expensive and difficult because of its unpredictability. Many features of submarine landslides and the damage they cause to communication cables are unclear. The aim of this study is to use experimental approach to analyze and understand the motion mechanism of submarine landslides and its effect on communication cables. Our interest in submarine landslides lies in disaster mitigation of communication cables. An experimental apparatus to study submarine landslides was developed for this purpose. The apparatus consists of a wheel-shaped hollow disc of height 1.8m, an axle shaft at the center and a trough with a width of 0.4m at the inner circumference. Submarine landslides is simulated by using silica sand-water mixture in the lower part of the trough as the wheel rotates in a anticlockwise direction on the axle shaft with silica sand-water mixture in the same direction of motion, all controlled by a speedometer. Using this apparatus, with silica sand no.7-and no.8-water mixtures for these experiments, normal stress, shear stress, pore water pressure on the bottom of the apparatus and impact force on a communication cable model were measured using high definition transducers, sensors and data loggers. Experiments were carried out considering four factors: (1) the effect of motion velocity of submarine landslides; (2) the effect of submarine landslide volume; (3) Material composition of submarine landslides; and (4) the effect of different cable diameters. From data obtained from series of experiments, the friction angle of submarine landslides and impact force on a communication cable was obtained. In addition, small plastic balls which have specific gravity similar to silica sands were used as tracers to observe the characteristic bulk movement of soil masses during the experiments; results obtained were compared with the friction angle and impact force on a cable. Result obtained from the experiments show that four critical values of velocities and five stages of soil mass flow evolution conditions exist in these experiments. Impact force on the communication cable model is high for submarine landslides with low motion velocity, but decreases until the velocity gets to a critical value where liquefaction occurs, and subsequently increases in a linear fashion with velocity. On the other hand, friction coefficient is positively correlated with velocity of soil mass, but shows different tendency before and after the critical value of velocity. Also, large diameter cables are subjected to high impact forces. When the diameter of the cable is increased by 10%, the impact force also increases by 50%. The experiment with setting height of 20mm showed the high impact force. Conversely, experiments with higher setting height (40mm and 80mm) showed low impact force. This may be due to the influence of different relative densities of submarine landslide sediments. Although it is difficult to simulate the flow conditions which occur in deep water, we hope the test results provide some hints for communication cable design and cable positioning in the ocean.

Keywords: submarine landslide, motion mechanism, submarine cable, internal friction angle