One-year, regional-scale simulation of radiocaesium-137 radioactivity in the ocean following the Fukushima Daiichi Nucle

Daisuke Tsumune, Takaki Tsubono, Michio Aoyama, Mitsuo Uematsu, Kazuhiro Misumi, Yoshiaki Maeda, Yoshikatsu Yoshida, Hiroshi Hayami

1 Central Research Institute of Electric Power Industry, 2 Central Research Institute of Electric Power Industry, 3 Atmosphere and Ocean Research Institute, The University of Tokyo

A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition. A 1-year, regional-scale simulation of 137Cs activity in the ocean offshore of Fukushima was carried out, the sources of radioactivity being direct release, atmospheric deposition, and the inflow of 137Cs deposited on the ocean by atmospheric deposition outside the domain of the model.

The rates of direct release of 131I, 134Cs, and 137Cs were estimated for 1 year after the 1F NPP accident by comparing simulated results and measured activities. The estimated total amount of directly released 131I, 134Cs, and 137Cs by the end of February 2012 were 11.1 PBq, 3.52 PBq, and 3.55 PBq, respectively. Tsumune et al. (2012) previously estimated the total amount to be 3.51 PBq by the end of May 2011. The total amount of directly released 137Cs activity increased by 0.04 PBq between June 2011 and February 2012. We used an atmospheric transport model with atmospheric release rates to estimate atmospheric deposition onto the ocean.

We analyzed 131I/137Cs activity ratios to investigate the contributions of each source of 137Cs (Tsumune et al., 2012) and compared simulated results and measured activities. The fact that simulated 137Cs activities attributable to direct release were in good agreement with measurements suggests that the estimated direct release rates were reasonable. Employment of JCOPE2 instead of HYCOM for nudging improved both the offshore transport result and the reproducibility of 137Cs activities 30 km offshore. Simulated 137Cs activities attributable to atmospheric deposition were underestimated relative to observations. The rate of atmospheric deposition onto the ocean was underestimated compared to measurements because of a lack of measurements of deposition itself when atmospheric deposition rates were estimated. Measured 137Cs activities attributable to atmospheric deposition helped to improve the ability of simulated atmospheric deposition rates to reproduce observations. Simulated 137Cs activities attributable to inflow of 137Cs deposited onto the ocean outside the domain of the model were in good agreement with measurements in the open ocean in the model domain after June 2012.

Although the contribution of inflow increased with time and was dominant by the end of February 2012, the activity associated with directly released 137Cs decreased exponentially with time and was present only in the coastal zone by the end of February 2012.

Keywords: Fukushima Daiichi Nuclear Power Plant, Accident, Regional Ocean Model, Radiocaesium, Release amount, Ocean dilution
Horizontal distribution of radiocaesium in the northwestern North Pacific after the accident of TEPCO’s Fukushima NPS

Tatsuo Aono¹, Makio Honda², Hajime Kawakami², Toshiro Saino²

¹National Institute of Radiological Sciences, ²Japan Agency for Marine-Earth Science and Technology

The accident of TEPCO’s Fukushima Dai-ich Nuclear Power Station (Fukushima NPS) was caused by the 2011 off the Pacific coast of Tohoku Earthquake and tsunami on March 11, 2011 and large amount of radioactive material were discharged by the hydrogen explosion and leaked from Fukushima NPSs to the ocean. To investigate the transport of radionuclides to the ocean and their dispersion, we conducted two cruises with the R/V Mirai in the western North Pacific about one and three months after this accident and measured caesium (Cs-134 and Cs-137) in seawater. During two cruises (from 14 April to 5 May and from 27 June to 3 August, 2011), 20-L seawater in the surface and shallow layer (< 200 m) were collected along the cruise track with an underway surface pump and a multiple water-sampling system, analysed by the ammonium phosphomolybdate/Cs compound method and measured by low back ground gamma spectrometry using Ge detectors.

Cs-137 in surface seawater ranged from < 0.002 to 0.284 and < 0.001 to 0.561 Bq/kg during April and May and during June and August, respectively. The radiocaesium could not be detected in seawater of the Kuroshio extension current. Samples from stations off Fukushima and off Miyagi had higher Cs-137 (0.11 ~ 0.28 Bq/kg) than those at other stations in April, however, the highest Cs-137 was observed at JKEO (38.5N, 148.25E) and Cs-134 could be detected in the 200 m depth at JKEO and off Fukushima in June. At S1 (30N, 145E), is located in the south of the Kuroshio current, Cs-134 in the 200 m depth was observed in April, that was not detected in June. On the other hand, at K2 (47N, 160E), the activities of Cs-134 and Cs-137 were almost 0.01 Bq kg/kg in the surface seawater, and those of Cs-134 were less than the limit of detection (< 0.002 Bq/L) at the depth of 200 m in both April and June. The obvious variation of these activities were not observed around the observed northern east area. These results suggest that the dispersion of radiocaesium in the marginal area were effected of the atmospheric diffusion and the leakage of contaminated water, and that in open sea were effected of only the atmospheric diffusion after a half year from the accident.

Keywords: radiocaesium, seawater, North Pacific, The accident of TEPCO’s Fukushima NPS
Surface pathway and subduction of Fukushima radioactivity in the North Pacific Ocean in March 2011 - June 2012

Michio Aoyama1, Mitsuo Uematsu2, Yasunori Hamajima3, Daisuke Tsumune4

1Meteorological Research Institute, 2Atmosphere and Ocean Research Institute, The University of Tokyo, 3LLRL, Kanazawa University, 4Central Research Institute of Electric Power Industry

134Cs and 137Cs were released to the North Pacific Ocean by two major likely pathways, direct discharge from the Fukushima NPP1 accident site and atmospheric deposition. High density observations of 134Cs and 137Cs in the surface water were carried out at 322 stations by 17 cruises of cargo ships and several research vessel cruises since March 2011 till March 2012. Main body of radioactive surface plume of which activity was exceed 10 Bq m⁻³ had been travelling along 40 oN, and reached International Date Line on March 2012. A feature was that the radioactive plume was confined along 40 oN when the plume reached International Date Line. Although activities of 134Cs and 137Cs in the surface water decreased rapidly, a maximum of activities of 134Cs and 137Cs in seawater at about 300 meters depth was observed at 40 oN 165 oE in June 2012. We can say that the observed maximum of 134Cs and 137Cs was formed by subduction in winter 2011/2012 because a density of Central Mode Water of 26.3 kg m⁻³ corresponded to about 300 meters depth in this region. Water column inventory of 134Cs from surface to 1000 meters depth was 2710 ± 210 Bq m⁻² in October 2011 at 40 oN 165 oE and 80 % of water column inventory of 134Cs existed shallower than 200 meters, however only 20 % of water column inventory of 134Cs was shallower than 200 meters while 80% was deeper than 200 meters in June 2012 due to subduction in winter 2011/2012.

Keywords: Fukushima, radioactivity, plume, subduction, radiocaesium, subduction
Possible southward transport of the directly-discharged Fukushima-derived radiocesium across the Kuroshio Extension

Yuichiro Kumamoto¹, MURATA, Akihiko¹, KAWANO, Takeshi¹, AOYAMA, Michio²

¹Japan Agency for Marine-Earth Science and Technology, ²Meteorological Research Institute

The massive Tohoku earthquake and consequent giant tsunami of March 11, 2011 resulted in the global release of radiocesium (Cs-134 and Cs-137) in the environment from the Fukushima Dai-ichi nuclear power plants (FNPPs). In the North Pacific Ocean, a large portion of the Fukushima-derived radiocesium has been settled both through atmospheric deposition and direct discharge. The direct discharge of radionuclide-contaminated waters brought a serious contamination of radiocesium (about ten million times higher than the background level) in coastal seawaters near the FNPPs just after the accident. Some observations in open oceans clarified that radiocesium activity in surface water of the North Pacific became more than ten times higher than that before the accident due to the atmospheric deposition. About two years after the accident, the radiocesium activity in seawaters decreased remarkably while that in sediment samples on coastal seafloors is still high. Therefore it is necessary to address risks to marine ecosystem and public health for a long time. Meanwhile evaluations of the total amount and behavior of the Fukushima-derived radiocesium in the vast North Pacific Ocean are essential for an estimation of the total amount of the released radiocesium and a prediction of spreading process of the radiocesium in the future, respectively. We present here the Fukushima-derived radiocesium in seawaters at stations in the northwestern North Pacific Ocean hundreds km away from FNPPs in January and February 2012. Surface and deeper samples (0 - 800 m) were collected into 20-L cubitainers using a bucket and a conductivity-temperature-depth rosette with water samplers. The samples were filtrated and acidified by nitric acid on board. Radiocesium in the seawater sample was concentrated onto ammonium molybdophosphate (AMP). Radiocesium, cesium-134 (half-life 2.07 years) and -137 (half-life 30.04 years), in the AMP/Cs compound was measured using a gamma-spectrometry with well-type Ge detectors. Cesium-134 was observed in surface waters from all the stations between 20°N and 42°N about one year after the disaster (0.2 - 18 Bq/m³). This suggests that the Fukushima-derived radiocesium has been settled at all the stations because cesium-134 activity in the North Pacific before the accident was below detection limit. The cesium-134 activity in surface waters of the subarctic (north of 39°N approx.) and subtropical (south of 35°N approx.) areas were less than 4 and 1 Bq/m³, respectively. Relative high activities of cesium-134 (8 - 18 Bq/m³) were found in the transition area between the subarctic and subtropical areas, which is due to an eastward transport of the direct-discharged radiocesium from FNPPs along the North Pacific Current. Cesium-134 activities in the winter mixed layer from surface to 150 or 200m depth approx. were constant and these below the mixed layer were not detected. At a station located just south of the Kuroshio Extension, which is boundary between the transition and subtropical areas, the activity in the mixed layer was less than 1 Bq/m³ while there was a cesium-134 maximum (5 - 9 Bq/m³) just below the mixed layer (200m and 300m depths). Water density (sigma-theta) of the maximum ranged from 25.2 to 25.4, which corresponds to densities of surface waters in the transition area in winter. Thus the subsurface cesium-134 maximum at the station in the subtropical area probably originated from the direct-discharged radiocesium in the transition area. Furthermore in deeper layers (400m and 600m depths) at the station low activities of cesium-134 were detected significantly. These results suggest a southward transport of the directly-discharged radiocesium from the transition to the subtropical areas along isopycnal layers across the Kuroshio Extension during the one year after the accident. In our presentation results from other stations, including results of cesium-137, will be discussed.

Keywords: Fukushima Dai-ichi nuclear power plants, radiocesium, North Pacific
Transport of Fukushima-derived radiocaesium to the ocean interior by sinking particle

Makio Honda\(^1\), Kawakami, Hajime\(^2\), Nagao, Seiya\(^3\), Watanabe, Shuichi\(^4\), Saino, Toshiro\(^5\)

\(^1\)Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, \(^2\)Mutsu Institute of Oceanography, Japan Agency for Marine-Earth Science and Technology, \(^3\)Institute of Nature and Environmental Technology, Kanazawa University, \(^4\)Mutsu Institute of Oceanography, Japan Agency for Marine-Earth Science and Technology, \(^5\)Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology

The 2011 Tohoku-Oki Earthquake, occurred on 11 March 2011, and the tsunami it caused seriously damaged the Fukushima Daiichi Nuclear Power Plant (FNPP1). Large quantities of artificial radionuclides were emitted from FNPP1. At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the FNPP1 accident occurred. Radiocaesium (\(^{134}\)Cs and \(^{137}\)Cs) derived from FNPP1 accident was detected in sinking particles collected at 500 m by late March 2011 and at 4810 m by early April 2011 at both stations. The sinking velocity of \(^{134}\)Cs and \(^{137}\)Cs was estimated to be from 8 to 36 m/day between the surface and 500 m and >180 m/day between 500 m and 4810 m. \(^{137}\)Cs specific activity varied from 0.14 to 0.25 Bq/g dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. The total \(^{137}\)Cs flux by late June at K2 and by late July at S1 was from 0.5 to 1.7 Bq/m2 at both depths. Compared with \(^{137}\)Cs input to both stations by April 2011, estimated from the surface \(^{137}\)Cs activity and mixed layer depth and by assuming that the observed \(^{137}\)Cs flux was constant throughout the year, the estimated removal rate of \(^{137}\)Cs from the upper layer (residence time in the upper layer) was from 0.3 to 1.5%/year (68 to 312 years). The estimated removal rates and residence times are comparable to previously reported values. Based on preliminary results of \(^{134}\)Cs analysis on sinking particle collected at 4810 m of K2 between August 2011 and June 2012, the maximum \(^{134}\)Cs flux and concentration were observed between May and Jun 2011 and decreased gradually thereafter. However \(^{134}\)Cs was still detected and the ratio of \(^{134}\)Cs to \(^{137}\)Cs was close to one in sinking particle collected in April 2012. Total \(^{134}\)Cs flux at 4810 m of K2 by April 2012, at about one year after FNPP1 accident, was estimated to be higher than 2.5 Bq/m2. Assuming that the \(^{134}\)Cs inventory (atmospheric \(^{134}\)Cs input) at K2 was 450 Bq/m2, removal rate of \(^{134}\)Cs from the upper layer (residence time in the upper layer) was > 0.6%/year (< 180 years) and comparable to previous estimate. At 4810 m of S1, highest \(^{134}\)Cs specific activity was found in December 2012 and about half a year later than that at 4810 m of K2. Although flux collected at 4810 m of S1 were not always sufficient for analysis, the \(^{134}\)Cs was detected by early February 2012. In June-July 2012, seafloor sediments at K2 and S1 were collected. Analysis of radiocaesium in the seafloor sediment and sinking particle collected by sediment trap is still ongoing. During 2013 JPGU meeting, Fukushima derived radiocaesium flux in sinking particle and inventory of radiocaesium in the seafloor sediment will be discussed.

Keywords: Fukushima Daiichi Nuclear Power Plant, Artificial radiocaesium, Western North Pacific, Sinking particle, Sediment trap, 2011 Tohoku-Oki Earthquake
Horizontal distribution of Fukushima-derived radiocesium in zooplankton in the northwestern Pacific Ocean

Minoru Kitamura1*, Yuichiro Kumamoto1, Hajime Kawakami1, Katsunori Fujikura1, Eric C. Cruz2

1Japan Agency for Marine-Earth Science and Technology, 2NOAA

The magnitude of the 9.0 Tohoku earthquake and the ensuing tsunami on March 11, 2011, inflicted heavy damage on the Fukushima Dai-ichi nuclear power plant (FDNPP). Fission products were emitted, falling over a broad range in the northern hemisphere, and water contaminated with radionuclides leaked into the ocean. In this study, we described the horizontal distribution of the Fukushima-derived radiocesium in zooplankton and in surface seawater in the western North Pacific Ocean (500-2100 km from the FDNPP) 10 months after the accident. 134Cs and 137Cs were detected in all zooplankton and seawater samples. Because of its short half-lives, 134Cs detected in our samples could only be derived from the FDNPP accident. The radiocesium concentrations in zooplankton were high at around 25N while those in surface seawater were high at around the transition area between the Kuroshio and the Oyashio Currents (36-40N). We analyzed the structure of the zooplankton communities but could not find out evidence which biological factors (taxa composition and relative biomass of carnivores) influenced 137Cs concentration in bulk zooplankton. Zooplankton communities contaminated with the Fukushima-derived radiocesium included many kinds of diel vertical migratory species. These migrants were exposed to higher concentrations of radiocesium while feeding at night in the ocean surface; however, exposure to contamination was lower as these species swam in the deeper mesopelagic layer during the day. In the subtropical region, 20-60% of krill and 3-36% of copepods on abundance basis were diel vertical migrants. On the other hand, 80-100% of krill and 77-88% of copepods were the migrants in the transition and the subarctic regions. Accumulated radiocesium in the migrant bodies are transported and may be taken into the mesopelagic food web.

Keywords: North Pacific ocean, zooplankton, FDNPP accident, 134Cs, 137Cs
Radiocesium stored in bottom sediments after the nuclear power plant accident due to the M9 earthquake

Motoyoshi Ikeda1*, KANDA, Jota2

1Hokkaido University, 2Tokyo Univ. of Marine Science and Tech.

Eastern Japan along the Pacific coast has been damaged seriously and is still on the way of recovery after the nuclear power plant accident in Fukushima due to the magnitude-9 earthquake on March 11, 2011. The radiocesium concentration went down greatly by the summer of 2011 in sea water, while it still keeps a high level in the bottom sediments. In particular off the coast from Miyagi to Ibaragi, some spots with high concentration have been found in the region shallower than 200-m depth. The dedicated members of the Oceanographic Society of Japan have been making estimations and discussion to find which processes are responsible for the high concentration. A symposium is held in March with widely opened discussion. We have so far reached the tentative conclusion that any process could be a possible one for the present condition among absorption/adsorption by plankton, detritus and disturbed sediments, direct adsorption of seawater cesium and inflow of suspended solids from rivers. The further collection and analyses of samples are required to confirm the actual processes, and therefore, the monitoring plan is proposed with effective analytical methods.

Keywords: radionuclide, earthquake, sediments
Regional-scale transfer of fallout radiocaesium in river networks impacted by the Fukushima Daiichi Nuclear Power Plant

Hugh Smith, Will Blake, Yuichi Onda, Kazuya Yoshimura, Yosuke Yamashiki, Yuki Matsuura

1 University of Liverpool, UK, 2 University of Plymouth, UK, 3 University of Tsukuba, 4 Kyoto University, 5 Yachiyo Engineering Co.

The Fukushima Daiichi Nuclear Power Plant accident which followed the magnitude 9.0 earthquake and tsunami on 11 March 2011 resulted in the release of Cs-134 and Cs-137 into the surrounding environment, where highly elevated levels are reported. As a result, there is considerable concern about the redistribution of these radioactive contaminants from the atmosphere to vegetation, soil and aquatic systems. This study reports on the magnitude of fluvial transfer of Cs-134 and Cs-137 through river networks located across the fallout region. Initially six nested river monitoring stations were established within the Abukuma River basin from June 2011. Subsequently, an additional 24 stations were established between October and December 2012, which included a further 12 stations within the Abukuma basin and another 12 sites monitoring the smaller coastal catchments north and south of the power plant. Combined, these 30 sites provide a regional-scale measure of fallout radiocaesium transfer by river networks. The catchment areas range from 8 to 5,172 km2 and span a large range in average catchment inventories of Cs-134 (16-2030 kBq/m2) and Cs-137 (19-2380 kBq/m2) based on MEXT inventory mapping. Flow and turbidity (converted to suspended sediment concentration) were measured at each station while bulk suspended sediment samples were collected at regular intervals using time-integrated samplers to allow measurement of Cs-134 and Cs-137 activity concentrations by gamma spectrometry. Preliminary monitoring data will be presented that shows highly elevated but generally declining activity concentrations of Cs-134 and Cs-137 on suspended sediment and provides a measure of the regional-scale variability in fluvial radiocaesium fluxes. While most radiocaesium is likely to remain in the soil profile, fluvial redistribution may contaminate downstream floodplains that were subject to low fallout and deliver significant quantities of highly contaminated fine sediment to the coastal zone.

Keywords: Fukushima, Radiocaesium, Sediment, Rivers, Contamination
Observation of flux and outflow-property of radioactive cesium in paddy field; A case study in Kawamata city, Fukushima.

Kazuya Yoshimura1∗, Yuichi Onda1

1Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba

Dynamics of radioactive cesium derived from Fukushima Dai-ichi NPP accident on land have big impacts on land utilization and migration to water system. There are many paddy fields in Fukushima prefecture. However, the distribution, effect of decontamination and dynamics of radioactive cesium in paddy field have been poorly understood. The outflow of soil attached by radioactive cesium from paddy field can be affected by many factors such as water management, irrigation/non-irrigation periods and inventory of radioactive cesium. For the dynamics of radioactive cesium, input of radioactive cesium through water intake is also one of important processes. To better understand the dynamics of radioactive cesium in paddy field, examination plots were established at planned evacuation zone in Kawamata city, Fukushima prefecture, and the input and output of radioactive cesium were studied through irrigation/non-irrigation period. In addition, the relation between concentration of radioactive cesium in suspended soil obtained in paddy field and the inventory of radioactive cesium was investigated.

Two plots were established. The one was cultivated normally (normal plot, 510 m²), and the other was decontaminated by scraping of surface soil with 5-10 cm thickness before cultivation (decontaminate plot, 731 m²). To measure the initial concentration and inventory of radioactive cesium, soil core (14 cm depth) was collected from twelve points from each plot, and the core was sliced into 2 cm thickness. The flow volume and suspended soil concentrations in influent/effluent water were monitored by parshall flume/water-level gauge and turbidity probe, respectively. Suspended soil in the water was trapped by time-integrated suspended soil sampler and collected every one or two weeks. The soil core and suspended soil were dried (105 degrees Celsius, 24 hours) and disaggligated by grinding. The activity of radioactive cesium was measured by germanium semiconductor detector. Particle size distribution was measured by laser diffraction particle size analyzer.

The outflows of soil and radioactive cesium showed statistically significant correlations with rainfall in both irrigation/non-irrigation periods, although clear relation was not observed for all data through the two periods. These results indicate that the amount of radioactive cesium migrated from paddy field can be estimated from rainfall by dividing the period into irrigation/non-irrigation periods. Difference in the slopes of the relations indicated that the outflow of radioactive cesium due to rainfall easily occurred during non-irrigation period. The output of radioactive cesium was higher than their input. Although more investigations were necessary concerning on inventory of radioactive cesium at catchment of irrigation water and water management in paddy field, the effective half-life of radioactive cesium in paddy fields can be shorter than the decay half-life. The concentration of radioactivity of cesium in suspended soil showed significant correlation with inventory, indicating that the concentration of radioactivity of cesium in runoff soil is possible to be estimated from their inventory.

Keywords: Fukushima prefecture, Paddy field, Radioactive cesium, Soil, Flux, Inventory
Characteristics of radioactive Cs in the sediment from the storage reservoir in Iitate village, Fukushima prefecture

Yusuke Aoi¹*, Keisuke Fukushi², Norio Kitadai², Taeko Itono¹, Kenji Kashiwaya², Hirohisa Yamada³, Tamao Hatta⁴, Yuzo Manpuku⁴

¹Graduate School of Natural Science & Technology, Kanazawa University, ²Institute of Nature and Environmental Technology, Kanazawa University, ³National Institute for Materials Science, ⁴Japan International Research Center for Agricultural Sciences

The storage reservoir sediment contaminated by radioactive Cs, obtained from Hiso district, Iitate village, Fukushima prefecture Japan, were characterized in detail. The 30 cm sediment core from the reservoir were cut into 1 cm on site. The water contents, radioactive Cs concentrations, mineral composition and densities from each sample were measured. The clay fraction was obtained from the parts of the sediments which contain high radioactive Cs concentrations. The clay mineralogy was analyzed by X-ray diffraction of the chemical treated oriented specimen. The desorption experiments of radioactive Cs from the clay fraction were conducted by washing with high Mg concentrations solutions. The radioactive Cs concentrations before and after the experiments were measured.

The radioactive Cs was strongly sorbed by clay minerals containing vermiculite and mica and hardly desorption in the conditions of natural water. The transport of the radioactive Cs in the surface condition must be accompanied with the movements of the clay minerals. The high accumulation of Cs-137 was observed at top 9cm layer in the sediment. The Cs-137 concentration steeply decrease with depth after 9 cm depth. At the surface 9cm layer, the 137Cs concentrations possessed periodicity and were inversely correlated with the densities. In addition, the 137Cs concentrations has inverse correlation with the records of the precipitation in the area. These behavior indicate that the contaminant sediments come in the strange reservoir from the catchment area by the erosion accompanied with precipitation. Therefore, the strange reservoirs play a role for the sink of the radioactive Cs in the area.

Keywords: radioactive Cs, Fukushima Daiichi Nuclear Power Plant, clay minerals, storage reservoir sediment
Effects of rain events on transport of radiocesium in the Abukuma River during 2011-2012

Seiya Nagao¹, KANAMORI, Masaki², OCHIAI, Shinya¹, KIRISHIMA, Akira³, YAMAMOTO, Masayoshi¹

¹LLRL, INET, Kanazawa University, ²Grad. School of NST, Kanazawa University, ³IMRAM, Tohoku University

About 15 PBq of both Cs-134 and Cs-137 was released from the Fukushima Daiichi Nuclear Power Plant (NPP) after the 2011 Tohoku earthquake and tsunami. Surface deposition pattern of Cs-134 and Cs-137 occurred at Fukushima, Tochigi and Gunma Prefecture by combination with wind direction and precipitation. Therefore, it is important to elucidate the short-term to long-term impacts of the Fukushima Daiichi NPP accident on ecosystems of river watershed environments. This study was conducted to investigate the effects of rain events on transport of Cs-134 and Cs-137 in the Abukuma River running through Fukushima and Miyagi Prefecture in Japan, 15 months after the Fukushima Daiichi NPP accident.

Field experiments were carried out at Shirakawa (upper), Motomiya, Date (middle) and Iwanuma (lower) in the Abukuma River during June 19-21, 2012. Typhoon Guchol struck Japan on June 20. Fukushima Prefecture had rainfall of 77-136 mm during June 19-21. The suspended particles were separated using centrifugation and filtration with No. 5A filters and a pore size of 450 nm membrane filters. The radioactivity of Cs-134 and Cs-137 in the filtered river waters was measured as dissolved forms of radiocesium with gamma-ray spectrometry using ammonium molybdophosphate (AMP)/Cs compound method. The Cs-134 and Cs-137 were measured using gamma-ray spectrometry with a low BKG Ge detector for 1-3 days. The suspended solids were also measured using gamma-ray spectrometry after drying them at room temperature.

Total radioactivity of Cs-134 and Cs-137 in river waters was 0.016-0.27 Bq/l at normal flow conditions on April 18 and June 19 in 2012, but it increased to 3.83 Bq/l in high flow conditions by heavy rains occurring with the typhoon. The particulate fractions of Cs-134 and Cs-137 were 77-89% at the normal flow condition, but were close to 100% after the typhoon. The variations of radiocesium concentration may correlate with the water level at each site. These results indicate that the pulse input of radiocesium associated with suspended particles from land to coastal ocean occurred by the heavy rain event.

Keywords: river water, radiocesium, dissolved forms, particulate forms, migration behavior, rain events
The behaviour of radio-Cs in the Abukuma riverine system emitted from the FDNPP

Aya Sakaguchi1, Hokuto Iwatani1, Kazuya Tanaka2, Haruka chiga1, Qiaohui Fan1, Akinobu Kadokura1, Yoshi Takehashi1

1Graduate School of Science, Hiroshima Univ., 2ISSD, Hiroshima Univ.

As a consequence of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, a huge amount of radio-Cs was discharged into the environment. Especially for the Abukuma riverine system, which is the largest river in the Tohoku-area and can be a dominant water resource of this region, the watershed of this river has been seriously contaminated. To observe the fate/behaviour of radio-Cs in this region, we analysed Cs-137 in aerosol, soil, river suspended solid and sediments and water samples. In addition to the analyses of Cs-137 in natural samples, the adsorption/desorption experiments were conducted for analogous to natural system.

From the observations of riverine samples in the period from June/2011 to Dec./2012, it was found that Cs-137 dominantly existed in particle fraction rather than dissolved fraction. This is the opposite result of the situation of Ukraine in one to two years after the Chernobyl accident, and might be due to the differences of the content of organic matter in soil between Japan and Ukraine. This possibility is supported by our results of adsorption/desorption experiments of Cs and humic-acid on clay minerals. The concentration of Cs-137 in particulate fraction (Bq/L) in river water was decreased with date. However, the concentration in a suspended solid (Bq/g) was not decreased. So, it can be said the decrease of the concentration for Cs-137 (Bq/L) is apparent one rather than decontamination of river water. The concentration of dissolved Cs-137 (Bq/L), in Dec./2012, is one to two order of magnitude smaller than that in June/2011. This result suggested that the more soluble fraction was leached immediately after the accident, and a small amount of Cs-137 has been leached from soil steadily. Actually, we recognise the existence of Cs with some chemical species from the results of long term leaching-experiment of surface soil and aerosol. The difference of chemical species can show the specific leaching/desorption behaviour of Cs in the environment.

Using our results for riverine system and flow rate of Abukuma river, the amount of drained off Cs-137 from the river to the ocean was estimated as 13 TBq in the last two years. By the result of long term leaching-experiment of surface soil with seawater, it is estimated that about 20% of discharged Cs-137 to the ocean would be leached in the sea water.

Keywords: FDNPP, Cs-137, Abukuma Riverine system
Transfer of fallout radiocesium in various terrestrial environment in Yamakiya district, Kawamata Town

Yuichi Onda1*, Hiroaki Kato1, Kazuya Yoshimura1, Yutaka Abe1, Jeremy Patin1, Maki Tsujimura2, Kenji Tamura2

1Center for Research in Isotopes and Environmental Dynamics, 2Faculty of Life and Environmental Sciences, University of Tsukuba

Radioactive contamination has been detected in Fukushima due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami on 11 March 2011.

Following comprehensive investigation (FMWSE project; http://fmwse.suiri.tsukuba.ac.jp/) was conducted to confirm migration of radionuclides through natural environment including soils and rivers funded by MEXT, Japan. Experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. Approximate Cs-137 fallout in this area is 200-1000 kBq/m2.

The main finding is as follows:

1) Migration of radionuclides to soil water, stream water and ground water was confirmed low at present. On the other hand, concentration of radiocaesium was found approximately 50 kBq/kg in the suspended sediments flowing down the river.

2) Amount of sediments deposited in the tank placed at the end of downstream within the USLE plot was confirmed together with the concentrations of radiocaesium.

3) In forests, distribution of radiocaesium was able to be confirmed to a certain extent by placing towers in the Japanese cedar forest and broad-leaved forest. To date, since a large amount of radiocaesium is considered to be found in coniferous tree canopies, these data are expected to be applied to future decontamination. Moreover, further investigation is necessary on the chemical state of radiocaesium which falls down to the forest floor as throughfall and on the actual condition of downward migration from forest floor to deeper soil layers.

Keywords: Radionuclides, Transfer, Soil Erosion, Forest, Cs-137
Transfer of the Fukushima reactor accident-derived radionuclides in forest environments

Hiroaki Kato1,*; Yuichi Onda1; Ayumi Kawamori1; Keigo Hisadome2

1Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 2Asia Air Survey Co., LTD.

The Fukushima Daiichi nuclear power plant accident resulted in extensive radioactive contamination of the forest environment in Fukushima and the neighboring prefectures. In this study, we analyzed radiocesium concentrations in rainwater, throughfall, stemflow, and litterfall to characterize the transfer of the deposited radiocesium in various forest stands (evergreen conifers and broad-leaved forests), in Tochigi (Cs-137 fallout < 10 kBq/m²) and Fukushima (Cs-137 fallout = 300-600 kBq/m²) prefectures. Furthermore, in-situ measurement of radiocesium were conducted to delineate spatio-temporal variability of radiocesium in the canopy and forest floor. The result of this study demonstrated that a large proportion of radionuclides which deposited on forest were initially trapped by canopies, and subsequently transferred to forest floor in association with throughfall, stemflow, and litterfall. In the deciduous broad-leaved forest, the highest radioactivity was found at the forest floor; however, 25-40% of the total deposited radiocesium remained in the canopy of evergreen coniferous forests one year after the reactor accident.

Keywords: Fukushima Daiichi Nuclear Power Plant, Radiocesium, Forest environment, Canopy interception, Transfer
Investigation of an environmental fate of radiocaesium in the Fukushima forests

Tadafumi Niizato1, Hironobu Abe1, Takayoshi Watanabe1, Ken-ichi Yasue1, Yoshihiro Oda1, Haruo Sato1

1Japan Atomic Energy Agency

In this paper, we introduce an outline of the research plan of the "Long-term assessment of Transport of radioactive contaminant in the environment of Fukushima (Fukushima-Trace Project)" in the Fukushima Environmental Safety Center, Japan Atomic Energy Agency, and present a preliminary results of an investigation of an environmental fate of radiocaesium in the Fukushima forests, by an application of systems analysis.

Keywords: radiocaesium, environmental fate, Fukushima, forest, systems analysis
Dynamic of radiocesium from conifer needles to male flowers of sugi

Tsutomu Kanasashi1*, Sugiura Yuki1, Takenaka Chisato1, Ozawa Hajime2

1Graduate School of Bioagricultural Sciences, Nagoya univ., 2Fukushima Prefectural Forestry Research Centre

A large amount of radioactive substances were released into air through the severe accident of Fukushima Daiichi Nuclear Power Plant (NPP) in March 2011. They deposited on forest environments and absorbed and transported in trees, so they were detected in leaves developed even after 2012, when the release of radioactive substances from Fukushima Daiichi NPP should be stopped. In the spring of 2012, radioactive substances including radiocesium were detected in pollen of sugi (Cryptomeria japonica) in Fukushima. Since a large quantity of sugi pollen dispersing in spring has been recorded in Japan, it is considered that the secondary radioactive dispersion might be occurred through pollen. In order to estimate the secondary dispersion of radiocesium from sugi forests, it is important to understand the transfer of radiocesium from needle leaves to pollen through male flowers. We measured the radiocesium concentrations in sugi needle leaves, male flowers, and pollen, and then evaluated the transport characteristics.

Sugi needles with male flowers were collected from 114 sites in Tohoku, Kanto and Koshinetsu districts from November to December 2012. Three samples (one sample from one individual) were collected at one site. Male flowers were collected from the samples and the needles were separated into three different parts corresponding to each elongation year; 2012, 2011, and before 2010. They were washed with tap water and rinsed with distilled water, and then oven-dried at 80°C for 48 hours. They were enclosed into U-type containers without pulverization for male flowers and with pulverization for needles. By gamma ray spectrometry using High purity germanium (HPGe) radiation detector, cesium 137 and 134 (Cs-137, 134) were detected, and the radioactivity per dry weight (Bq/kg) were calculated. Gamma ray spectrometry of the pollen samples were conducted by using a well type of HPGe radiation detector. The distribution of radioactive substances in needles and male flowers were detected by an autoradiography method of Imaging Plate (IP).

Needles at the part of before 2010 resulted in the highest concentrations of Cs-137, 134 compared with other parts. Autoradiograph images showed spotted distribution of high radioactivity. Therefore, it is considered that the radioactive fallouts from Fukushima Daiichi NPP accident attached and remained on sugi needles without washout. Male flowers showed higher radiocesium concentrations than needles elongated in 2012, and the top of needles, which sustained male flowers, also contained higher concentrations of radioactivity than the other part of needles elongated in 2012. These results suggested that radiocesium is easy to transport to the needle top including male flowers.

Keywords: Fukushima Daiichi Nuclear Power Plant accident, sugi, needle, male flower, Cs-137, Cs-134
Migration dynamics of 137Cs deposited on the forested ecosystem in Fukushima after the nuclear power plant accident

Nobuhito Ohte¹, Masashi Murakami², Kouhei Iseda¹, Takahiro Suzuki², Keitaro Tanoi¹, Nobuyoshi Ishii³

¹Graduate School of Agricultural and Life Sciences, University of Tokyo, ²Graduate School of Science, Chiba University, ³National Institute of Radiological Sciences

A massive amount of radioactive substances, including cesium-137 (137Cs), emitted from the disabled nuclear power plant, has been deposited on the forested areas in the northeastern region of Honshu Island, Japan after the Fukushima Daiichi nuclear power plant accident. Forest ecosystems in these regions are particularly important, not only for the forest products industry but also for source areas of drinking water and for residential environments. To clarify the migrating mechanisms of 137Cs deposited on the forested ecosystem, we initiated intensive field observations in a small catchment that included forest headwaters and farmlands in the northern part of Fukushima Prefecture. The following expected major pathways of 137Cs export and diffusion were investigated: 1) transportation of dissolved and particulate or colloidal forms via hydrological processes within a forested catchment and export dynamics through the stream, and 2) diffusion through the food web in terrestrial and aquatic organisms of forests. Preliminary findings indicated the following: 1) Most of the 137Cs was discharged as suspended matter. High water flow generated by storm acted to accelerate the transportation of 137Cs from the forested catchments. Thus, the estimation of 137Cs export requires precise evaluation of the high flow acceleration during storm events; 2) Because litter and its detritus may form the biggest pool of 137Cs in the forested ecosystem, 137Cs diffusion occurs more rapidly through the detritus food chain than the grazing food chain. Most predators have already ingested 137Cs, particularly in aquatic environments. An urgent question that needs to be addressed is when and how 137Cs diffuses through grazing food chains and how rapidly this process occurs. To elucidate or to be able to predict these phenomena, the mechanisms of 137Cs release from litter and soil organic matter need to be clarified.

Keywords: 137Cs deposition, forested ecosystem, hydrological process, food web
Atmospheric radioactive cesium in the broad-leaf and Japanese cedar forest and canopy

Kazuyuki Kita1*, Misako Tanaka1, Hiroyuki Demizu2, Yasuhito Igarashi3, Masao Mikami3, Naohiro Yoshida4, Sakae Toyoda4, Keita Yamada4, Yuichi Onda5

1Faculty of Science, Ibaraki University, 2Faculty of Engneering, Ibaraki University, 3Meteorology Research Institute, 4Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 5Center for Research in Isotopes and Environmental Dynamics, Tsukuba University

Radionuclides emitted in the Fukushima dai-ichi nuclear power plant (FNDPP) accident have been deposited on the soil, ocean and vegetation. Especially, a significant amount of them has been attached on Japanese cedar trees because they are dominant evergreen trees which extend leaves in Fukushima mountainous region when the accident occurred. Re-suspension of radioactive cesium from these trees to the atmosphere may be one of significant path in the diffusion of radionuclides after the accident.

We have measured atmospheric concentration of radiation by Cs-134/137 in two forest sites: broad-leaf tree (BT) site and young Japanese cedar (JC) site at Kawamata-town near Fukushima to study re-suspension of radioactive Cs in the forest. Atmospheric suspended particle are collected with high/low-volume air samplers mounted at the forest floor and canopy, respectively, and gamma-ray emission from them were measured with Ge detector.

The measured concentration of atmospheric Cs-134/137 was about 2-times larger at the forest floor than that at the canopy both in BT and JC sites, indicating that particles including Cs-134/137 are produced or emitted in the forest. The ratio of atmospheric Cs-134/137 radiation concentrations to surface density of Cs-134/137 is significantly higher in JC site than that in BT site. Processes of re-suspension of radioactive cesium in these forests will be discussed.

Keywords: Fukushima daiichi nuclear plant accident, environmental radioactivity, re-suspension
Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident

Shoji Hashimoto1*, MATSUURA, Toshiya1, NANKO, Kazuki1, UGAWA, Shin2, SHICHI, Koji1, LINKOV, Igor3, SHAW, George4, KANEKO, Shinji1

1FFPRI, 2Kagoshima University, 3US Army Engineer R&D Center, 4University of Nottingham

Radiocesium (134Cs and 137Cs) released from the Fukushima Dai-ichi nuclear power plant to the atmosphere contaminated a large area of Japan’s land surface, the majority of which is covered by forest (Hashimoto et al. 2012b). The availability of countermeasure options for forest areas is limited to restriction of access and removal of contaminated materials (Hashimoto et al. 2012a). Even considering only the most heavily contaminated forests (≥ 134, 137Cs 1000 kBq m⁻² in 2011), however, the total volume of radioactively contaminated materials is estimated to be 33 million cubic meters and 21 Tg (dry matter) (Hashimoto et al. 2012b). To develop effective countermeasures to mitigate the impacts of radioactive contamination of forests, detailed monitoring of the radiocesium migration and re-distribution is essential. In addition, it is useful to be able to predict the future dynamics of the radiocesium between forest components; modelling is the best tool for this prediction. Here we simulated the dynamics of radiocesium deposited on Japanese forest ecosystems in 2011 using a model that was developed for tracking radionuclides in forest ecosystems after the Chernobyl accident in 1986 (RIFE1 model). The fate of the radiocesium was simulated using the initial conditions observed following the Fukushima accident. In addition, the simulation results were incorporated with a spatial distribution map of deposited radionuclides that was based on an air-borne survey. The simulation demonstrated that in the first two years after initial deposition radiocesium is retained primarily in the soil surface organic layer. Over a period of five to ten years radiocesium is predicted to move from the surface organic soil to the mineral soil, which will eventually become the largest reservoir of radiocesium within forest ecosystems. Spatial analysis clearly shows the reduction in the extent of contaminated areas which will occur as a result of natural decay of radiocesium, as well as the spatial distribution of radiocesium in each forest component. Considering the heavier rainfall and warmer conditions in Japan than in the countries contaminated by the Chernobyl accident, migration of radiocesium from organic to mineral soil may be faster than predicted. Although the uncertainty of our simulations should be taken into account, they provide a basis for understanding and anticipating the future dynamics of radiocesium in Japanese forests following the Fukushima accident.

Hashimoto, S., I. Linkov, G. Shaw, S. Kaneko (2012a) Radioactive contamination of natural ecosystems: seeing the wood despite the trees. Environmental Science and Technology, 46, 12283-12284
http://pubs.acs.org/doi/abs/10.1021/es304145n

Hashimoto, S., S. Ugawa, K. Nanko, K. Shichi (2012b) The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Scientific Reports, 2, 416, doi:10.1038/srep00416
http://www.nature.com/srep/2012/120525/srep00416/full/srep00416.html

Keywords: forest, radiocesium, decontamination, model, regional prediction, soil
Grasping changes in the sea bottom induced by the Tohoku earthquake using radionuclides

Shota Kambayashi1*, Jing Zhang2, Akira Takeuchi2, Keiji Horikawa2, Hiroyuki Kamachi2, Hirokami Kiyokazu3, Harue Masuda4, Shigeshi Fuchida4, Masayoshi Yamamoto5, Masafumi MURAYAMA6

1Graduate School of Science and Engineer, University of Toyama, 2Graduate School of Science and Engineer, University of Toyama, 3Laboratory of Radioisotope Center for Basic Research and Development in Natural Science, 4Department of Geosciences, Faculty of Science, Osaka City University, 5Institute of Nature and Environmental Technology, Kanazawa University, 6Center for Advanced Marine Core Research, Kochi University

Large seafloor faults, fissures and a landslide were confirmed in the sea bottom at the epicenter of the March 2011 Tohoku earthquake. Radionuclides were released into the environment by the associated accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP). These flowed into the ocean and were eventually deposited in the seafloor sediments. By analyzing \(^{137}\text{Cs}\) and \(^{134}\text{Cs}\) radionuclides in the marine sediments from shore to open sea, we have been able to better assess the radioactivity scattered from FDNPP and understand the changes in the marine sediment induced by the seismic activity of the Tohoku earthquake. Marine sediment samples were obtained from offshore of Fukushima, the Japan Trench and the Shatsky Rise during the R/V Hakuho-maru KH-11-7 cruise in 2011. A non-invasive X-ray CT scanner was used to obtain images of the internal structure of the sediment. Further, sediment samples were sliced from the sediment core every 0.5-2.0 cm and the radioactivity of the Gamma ray nuclide was measured using a Ge semiconductor detector. \(^{137}\text{Cs}\) and \(^{134}\text{Cs}\) in the sediment from offshore Fukushima and the Japan Trench were detected. Through analysis of the ratio of \(^{134}\text{Cs}/^{137}\text{Cs}\), it was suggested that most \(^{134}\text{Cs}\) was derived from FDNPP. However, the result showed that it had no influence on the environment by FDNPP through detecting the \(^{134}\text{Cs}\) in the sediment of open sea. Abundance of \(^{137}\text{Cs}\) and \(^{134}\text{Cs}\) was different between the most surface layer of the sediment and the whole sample, so it was necessary to analyze the whole sample when evaluating the environment radioactivity in the research area. Focusing on vertical profiles of \(^{137}\text{Cs}\) and \(^{134}\text{Cs}\), higher abundance was detected in the surface layer, however high abundance was also detected in the subsurface layer. In addition, it was suggested that the classify of detailed marine sediment changes can be divided into the following three types: I) formation of turbidite by principal earthquake (11 March 2011); II) formation of turbidite by principal earthquake and aftershock; III) formation of turbidite several times by principal earthquake and aftershock.

Keywords: radioactiv cesium, assess the radioactivity, marine sediment change
The distribution of radioactive strontium in coastal area of Fukushima Prefecture, Japan

Zin’ichi Karube1*, Atsushi Tanaka1, Katsuaki Kurishima2, Nobuharu Kihou3, Yasuyuki Shibata1

1NIES, 2WDB Co., Ltd., 3NIAES

At National Institute for Environmental Studies, Japan, cryogenically archived environmental samples in Environmental Time Capsule Program can be utilized for a retrospective study of an environmental pollutant. In March 2011, radioactive strontium (Sr-89 and 90) was accidentally released from Fukushima Dai-ichi Nuclear Power Plants (NPP), Japan, to both atmospheric and marine environments, similar to radioactive cesium. Although it has been considerably interested in abundance and dynamics of radioactive strontium in environment, they have been poorly understood. In this study, we determined the distribution of radioactive strontium in coastal environment of Fukushima Prefecture based on analyzing Sr in the collected bivalves.

Field sampling was performed at coastal area of Ibaraki Prefecture (Oarai town), Fukushima Prefecture (Iwaki city, Hirono town, Minamisoma and Soma city), Miyagi Prefecture (Ishinomaki city), and Aomori Prefecture (Higashidori village) from June to August 2011 and in May 2012. Soft tissue of bivalve samples was digested using nitric and hydrochloric acid at 180 degree C. Seawater sample was concentrated by carbonate precipitation, and then the precipitates were dissolved in nitric acid. Separation of strontium from these digested and concentrated samples was performed using crown ether resin. Radio activities of Sr-89 and 90 and radioactive yttrium (Y-90) were measured by low background gas flow counter.

Sr-90 activities of bivalves in 2011 were decreased with increasing the distance from NPP. The highest Sr-90 activity of the measured bivalves in 2011 was 0.17 Bq/kg at Hirono town, approximately 23 km south from NPP. Ratios of Sr-90 concentration between bivalves and seawater were 2.9 at Iwaki city, 48 km south from NPP, and 1.2 at Soma city, 37 km north from NPP. This indicates a relatively high tendency of bioconcentration of Sr-90 in bivalves. Sr-90 / Cs-137 activity ratio of bivalve was 0.0008 - 0.0015 in each sampling site of Fukushima Prefecture. Overall, our results suggest that concentration of the Sr-90 tended to be higher at south and near NNP site as well as Cs-137. Sr-90 actives of bivalves in 2012 also tended to be higher at south than north sites from NPP, but lower than that in 2011. Sr-90 / Cs-137 activity ratio of bivalve was 0.017 at Hirono town and 0.011 at Iwaki city in 2012. These results show the decrease of Sr-90 of bivalve from 2011 to 2012 and the difference in residence time between Sr-90 and Cs-137 in bivalves. Consequently, our results suggest that radioactive strontium derived from Fukushima Dai-ichi NPP in coastal area of Fukushima Prefecture was distributed to the south, probably as a result of the southward direction of oceanic current.

Keywords: Radioactive strontium, the Fukushima accident, Bivalve
Transfer of fallout radiocaesium from catchment to coast in the region impacted by the Fukushima nuclear accident

Will Blake¹∗, Hugh Smith², Yuichi Onda³, Kazuya Yoshimura³, Yosuke Yamashiki⁴, Yuki Matsuura⁵

¹Plymouth University, UK, ²University of Liverpool, UK, ³University of Tsukuba, ⁴Kyoto University, ⁵Yachiyo Engineering Co.

There is considerable concern about redistribution of radiocaesium from catchment soils to the coastal zone via river networks in the region impacted by the Fukushima Daiichi Nuclear Power Plant accident. This poster reports the magnitude of fluvial transfer of Cs-134 and Cs-137 through river networks located across the fallout region from June 2011 to present. Data from 30 sites provide a regional-scale measure of fallout radiocaesium transfer by river networks to the coastal zone. Study catchment areas range from 8 to 5,172 square kilometers and span a large range in average radioceasium catchment inventories based on MEXT inventory mapping. Flow and turbidity (converted to suspended sediment concentration) were measured at river gauging stations (n=30) while bulk suspended sediment samples were collected at regular intervals using time-integrated samplers to allow measurement of Cs-134 and Cs-137 activity concentrations by gamma spectrometry. Preliminary data explore the relationship between catchment inventory and sediment activity concentration. In the context of high resolution river monitoring data, this permits exploration of the interplay between suspended sediment loads and levels of contamination on the total flux and regional-scale variability of transfer to the coastal zone.

Keywords: Fukushima, sediment flux, radiocaesium, rivers
About the configurationality of catchment area unit and ChIbarakiTo Plume

Kazuya Kimura¹*, hisashi nirei¹, Daiki NAKADAI¹, Tomoyo Hiyama², Shoichi UESUNA³

¹Medical Geology Research Institute, ²Kanto Construction, ³Environmental Geology Consultant

A lot of radioactive materials were emitted by the Fukushima Daiichi nuclear disaster in March, 2011. Those of them; Cs-134 and Cs-137 have comparatively long half-life cause the radioactivity geo pollution in the east Japan. In fact, it is not explained completely how to spread, move and absorb cesium. However, it seems that there is a certain law of nature. That is to say, we should measure radioactive materials according to the law of generation (decay), movement, deposition and take necessary actions under the Katori- Narita-Itako Declaration of IUGS GEM (IUGS-GEM, 2011).

We followed this declaration and have continued measurement by use of RT-30 and RT-50 (both of made by GEORADIS). This paper describes the bit of the answer from the result to distribution and the form of the radioactive geo pollution in the Pleo-Kantoh Great Depth submarine Basin.

Keywords: Cesium-134, Cesium-137, radioactive geo pollution, Fukushima Daiichi nuclear disaster, ChIbarakiTo Plume
A large quantity of radioactive material was released by an accident of the Tokyo Electric Fukushima first Nuclear Power Plant with the East Japan great earthquake disaster of March 11, 2011 and pour into the outskirts, and a hotspot (the point where a radiation dose resists locally) has occured in a part of the away far-off Kanto district, and it is a very serious problem. It was brought mainly by the rain of March 21, and the radiation hotspot of the Kanto district is observed over the belt-shaped range of South Ibaraki, Northwest Chiba, and East Tokyo.

The radiation dose of the garden soil of the apartment complex first floor with Kashiwa-shi equal to the heartland of the hotspot of the Kanto district was 42,000 Bq/m² on April 18. This is bigger than a value in Gomel of Belarus that suffered great damage by Chernobyl nuclear plant accident of 1986, and it corresponds to a management area or the refuge area. In June, the radiation dose of the soil precisely was measured with a plastic scintillator, and recorded 13,000 Bq/kg. In addition, an energy spectrum of the radiation dose was analyzed with a Ge semiconductor detector. The main nuclide was 141I (half-life: 8 days), 143Cs (half-life: 2 years), and 147Cs (half-life: 30 years).

In a part of the Kanto district, area distribution of the radiation dose was measured with GPS linked dosimeter on a car, automatically. As a result of having clarified a change of the distribution of a half year by comparison of the measurement of the winter (from January to March in 2012) and the summer (from July to September in 2011), the radiation dose had decreased.

Furthermore, dose of radioactivity in seven places of the apartment in Kashiwa-shi every three months were measured. The dose of radioactivity was fell down by winter in 2011 and did not change too much afterwards. It is thought that radioactive material which attached to dust moved and spread, and faded away by rain and wind. But it is reported that the radioactive material is concentrated on another place. A more unpredictable situation continues.

I wish to thank Dr. Takeshi Saito, Dr. Zolotoukhina Tatiana, Mr. Noriaki Tanabiki, and Dr. Tadayuki Takahashi.

Keywords: Radioactive Material, Pollution, Kanto District
Detailed monitoring of transfer of 137Cs at the hillslope scale by in situ HPGe spectrometry and landsurvey

Jeremy Patin1*, Yuichi Onda1, Hiroki Yoda2

1Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 2Graduate School of Life and Environmental Sciences, University of Tsukuba

This study takes place after the Fukushima Daiichi Nuclear Power Plant disaster of March 2011, which was triggered by the Tohoku earthquake and the tsunami that followed. A large amount of radionuclides was released in the environment and settled in the form of fallout that contaminated the underlying soil. To provide a rapid assessment of the soil contamination and its potential redistribution, intensive scientific monitoring has been conducted since July 2011 in our study site, located in the Yamakiya district of Kawamata town, in the Fukushima prefecture, 37 km North-West from the crippled power plant.

At the hillslope scale, the main radiocesium movements are expected to occur via the redistribution of soil, namely erosion and deposition. As such, understanding erosion processes at the highest possible resolution allows for a better understanding of the fate of radiocesium.

Inside a 5 m x 22 m bounded hillslope plot, we deployed multiple innovative monitoring methods in addition to the measurements of runoff volumes and sediments radiocesium concentrations. Each major rainfall event was followed by a large number of spatially-distributed in situ gamma spectrometry measurements. The method is calibrated outside of the study plot using manual, high resolution, depth sampling (slices of 2 mm) of the soil and laboratory gamma spectrometry. From this calibration, maps of the radioactivity and soil redistribution can be constructed at the meter resolution.

In 2011 and 2012, several high resolutions Digital Elevation Models were acquired with a terrestrial laser scanner to assess the surface topography changes. After processing, and although the precision of the final DEMs (~2mm) is not enough to precisely identify and quantify the soil losses for a short interval of time, these DEMs do provide some information about the potential erosion and deposition sites.

Finally both methods permitted to observe physical processes of soil redistribution at the (big) rainfall event scale, including interrill and rill erosion, as well as local deposition and remobilization phenomenon. They provide information on the erosion spatio-temporal variability and the associated radionuclides transfers.

Keywords: 137Cs, Erosion, HPGe spectroscopy, Laser scanner, radiocesium, Fukushima
Deposition of radioactive materials in Iwate Prefecture, due to the Fukushima Nuclear Power Plant accident

Hideyuki Itoh

Iwate Prefectural University

A catastrophic earthquake occurred on March 11, 2011, and the tsunami it triggered caused severe damage along the Pacific coastline of northeast Japan. The tsunami also caused an accident at Fukushima Dai-ichi Nuclear Power Plant (FNPP), resulting in the release of a massive amount of radioactive materials all over northeast and central Japan. MEXT, Japan, carried out several airborne monitoring surveys. However, it is not possible to determine the distribution of material deposited with low-level radioactivity of less than 0.1 micro Sv/h from airborne monitoring surveys. Radioactive materials have been detected in Iwate Prefecture in farm and livestock products, making it necessary to understand the accurate contamination status in this region.

Behavior of radioactive material is very similar to that of ashfall from volcanic eruptions. Therefore, it is possible to apply techniques from volcanology to the evaluation of the natural radiation dose. The author carried out detailed contamination mapping across Iwate Prefecture.

The results have already been released on the Internet (http://www.poly.iwate-pu.ac.jp, in Japanese), and more than 35,500 people have accessed it thus far. They use the survey results as a hazard map for radiation doses.

Keywords: The Great East Japan Earthquake, Fukushima Dai-ichi Nuclear Power Plant accident, Iwate prefecture, Radioactive materials, diposition
Dynamics of radiocesium in terrestrial water at headwaters

Maki Tsujimura1, Yuichi Onda1, Yutaka Abe1, Manami Hada1, Pun Ishwar1, Masataka Nishino1

1University of Tsukuba

We investigated behavior of radiocesium in terrestrial water in headwaters, Yamakiya district, Kawamata town, Fukushima prefecture. We observed radiocesium concentration, stable isotopes, inorganic solutions, and CFCs concentrations of the rain water, soil water, groundwater, spring water and stream water, leading to the result that transfer of the radiocesium in the terrestrial water was very low.

Keywords: terrestrial water, hydrological cycle, radiocesium
Release of Radionuclides from Natural River, Abukuma as Suspended Particulate Matter into Pacific Ocean

Yosuke Yamashiki1, Yuichi Onda4, Yasuhito Igarashi3, Taeko Wakahara4, Yasuto Tachikawa5, Michiharu Shiiba5, Yuki Matsuura6

1Graduate School of Advanced Integrated Study in Human Survivability, 2Application Laboratory, JAMSTEC, 3Atmospheric Environment and Applied Meteorology Research Department, MRI-JMA, 4Graduate School of Life and Environmental Sciences, University of Tsukuba, 5Graduate School of Engineering, Kyoto University, 6Yachiyo Engineering Co. Ltd

Most of radioactive material released from Abukuma River Basin, one of the largest stream near the contaminated zone of Fukushima, flowing most of the contaminated plane zone then flow into the Pacific Ocean, are in the suspended particulate form, being estimated more than 90 % in the upper stream and 70 % near the river mouth. Most of radionuclides in particulate form are still trapped bottom sediment in the middle of the basin, however we find that significant amount are released during the heavy precipitation event. We also found that, at hydrological extremes the total loading increase more than 1000 times higher than the normal stream condition. The total flux of radiocesium into the Pacific Ocean estimated at the Iwanuma Station from 10 August 2011 to 10 May 2012 become 9.11 Terabecquerel during 274 days for Cs-137, and 6.81 Terabecquerel during 274 days for Cs-134.

Keywords: Radionuclides, River transport, Ocean, Suspended particulate matter, Flux
Mat-forming cyanobacteria effectively decontaminate radioactive cesium

Atsushi Yamamoto1, YOSHIDA, Shigeru1, YAMANISHI, Hirokuni2, ITOH, Tetsuo2, FURUKAWA, Michio3

1Department of Life Science, Kinki University, 2Atomic Energy Research Institute, Kinki University, 3Mayor of Kawamata-Machi, Fukushima

The accident at the Fukushima I Nuclear Power Plant released radioactive cesium around the plant. The cesium was trapped in fine surface soil (\textless{} 0.125 mm in diameter); particularly, the soil from the ground surface to a 1 cm depth was seriously polluted (Yamanishi \textit{et al.}, 2012; Inagaki \textit{et al.}, 2012). The following three points are thought to be important for decontamination of the cesium: 1) fixation of the polluted soil to its original area, 2) removal of the soil and 3) continuation of decontamination. From a Geological perspective, bacterial mat formation often sustains sedimentary structure. So, we aimed to develop a decontamination technique by artificial formation of bacterial mats, specifically cyanobacterial mats. In this study, we formed artificial cyanobacterial mats and measured 137Cs concentration of the mats and the residue of soil separated from the mat. The used soil was gathered from the Planned Evacuation Area in Kawamata, Fukushima. The soil was divided to fine (\textless{} 0.125 mm) and coarse (0.125 ? 1 mm). We placed both types of soil with a depth of about 5 mm on the dish and tried to form a cyanobacterial mat on the soil. We used three filamentous cyanobacteria. The incubation was carried out at 25 degree centigrade, dark : light = 12 h : 12 h cycle. The formed mat was dried and peeled from the soil, was washed by distilled water to the extent that the soil did not separate from the mat, dried it again and then measured 137Cs concentration using a germanium semiconductor detector in Kinki University Atomic Energy Research Institute. The residue soil of the final wash was also measured.

After a 2-month cultivation, we got cyanobacterial mats of 1 - 2 mm thickness. The mat covered the entire surface of the dish soil. The strength of the peeled mats differed between cyanobacterial strains. Measured 137Cs concentration was very high in all samples: 180 ? 380 Bq/g in the fine soil and 70 ? 600Bq/g in the coarse. The 137Cs concentration of the residue soils was 90 ? 240 Bq/g in the fine and 5 ? 19 in the coarse. As for almost all the residue soils, the 137Cs concentration was decreased from the control soil. 137Cs removal ratios, calculated from the 137Cs concentration of the control soil and residue soils were 45 - 54 % on the fine soil and 30 ? 50 % on the coarse. Both 137Cs concentration and removal ratios differed between cyanobacterial strains. In comparison with all measured ratios, the removal ratios were significantly higher with the fine soil compared with the coarse, for the ratios were thought to depend on the surface size of the particles of the soil. The 137Cs concentration ratios calculated from 137Cs concentrations of the mats and the residue soils were 1.3 ? 53. These ratios were equal to or higher than the ratios reported from higher plants (Dushenkov \textit{et al.}, 1999). Thus, our results demonstrate that cyanobacteria efficiently decontaminated radioactive cesium. Particularly, the efficiency of the fine soil decontamination should be effective in the phytoremediation of the paddy fields.

Keywords: cyanobacteria, phytoremediation, radiocesium, decontamination, bacteria mat, Fukushima I NPP
Radio-cesium accumulation during decomposition of leaf litter accelerated by fungal grazers

Nobuhiro Kaneko1*, Taizo Nakamori1, Huang Yao1, Toshiko Miura1

1Graduate School of Environment and Information Sciences, Yokohama National University

Vast forest area in eastern Japan has been contaminated with radio isotopes by the Fukushima NPP accident. Most of the area is covered by deciduous broad leave forests and some parts are conifer plantation forests. The forest floor in deciduous forests, and canopy of evergreen forest were most contaminated by fall out. Radio-cesium is known to stay bioavailable in forest ecosystems for long time, and it is necessary to terminate the cycling process to decontaminate the forest ecosystem. Ecological process to recycle radio-Cs in forest ecosystem should be studied to enhance decontamination of radio-cesium. Mushrooms (fungi) have been know to show high concentration of Cs. Although mushroom biomass in a forest ecosystem is small, fungal mycelium in detritus and soil is large, thus fungi contain substantial amount of radio-Cs. It is well known that concentration of some nutrients, such as nitrogen and phosphorus, increase, whereas potassium decreases during the leaf litter decomposition. We observed radio-Cs concentration of leaf litter during decomposition on a forest floor where radio-Cs (134+137) contamination was ca. 100 kBq/kg. We put 16 g (dry weight) of newly fallen mixed deciduous leaf litter (half of which was oak, Quercus serrata) into 25 cm x 25 cm litter bag in a deciduous forest about 50 km from Fukushima NPP. Coarse (2 mm) and fine (0.2 mm) mesh size bags were prepared to detect soil invertebrate effects on litter decomposition. Fresh litter 137-Cs concentration was ca. 3,000 Bq/kg in December 2011. During the decomposition process on the forest floor, litter 137-Cs increased exponentially and exceeded 10,000 Bq/kg after 6 months, indicating that Cs and K show contrasting dynamics during early decomposition phase. Increase in fungal biomass in the early stage of litter decomposition was observed. Therefore, this upward movement of Cs from humus and soil layer suggests fungal translocation of nutrients from outside of litter substrate. The litter in the coarse mesh showed higher concentration of Cs, therefore Interaction between fungal species and grazing effect on fungi by fungivorous invertebrates will enhance the translocation of radio-Cs from soil to decomposing litter.

Keywords: Fukushima Daiichi Nuclear Power Plant, radio-cesium, forest ecosystem, fungi, soil animals, decomposition system