Formation, Evolution, and Future Exploration of the Giant Planets

Sushil Atreya¹ *, Paul R. Mahaffy²

¹ University of Michigan, Ann Arbor, USA, ² Goddard Space Flight Center, Greenbelt, USA

The giant planets are key to the mystery of the origin and evolution of the solar system and, by extension, extrasolar systems. Prevailing hypotheses of the giant planet formation include the core accretion model and the gravitational instability model, while the former is conventionally favored. At the heart of the classic core accretion model is the formation of a solid core of a critical mass of 10-15 Earth masses, followed by gravitational collapse of surrounding protoplanetary nebula that completes the formation of the planet. The core forms from agglomeration of grains of dust, refractory material, metals and ices and the volatiles they trap. The most volatile of the gases, hydrogen, helium and neon are captured last, gravitationally during the collapse phase. The atmosphere results from these gases and the volatiles initially trapped in and subsequently released from the core during accretional heating, and presumably mixed uniformly. The above formation scenario demonstrates that the core is critical to the formation of the giant planets, and that the well-mixed atmosphere is expected to reflect the composition of original elements. Since heavy elements (>4He) comprise much of the core mass, their determination is crucial to any model of the giant planet formation. The core accretion model predicts solar abundances of heavy elements, all relative to H. The Galileo probe measurements at Jupiter in 1995 changed all that. The probe revealed that the heavy noble gases, argon, krypton and xenon, were each enriched relative to solar by roughly a factor of two, whereas the enrichment factor was 4-6 for carbon and nitrogen and about 2.5 for sulfur. Thus, these heavy elements were found to be enriched relative to solar by a factor of 4(+/-2), and the enrichment factor is non-uniform. One missing element is oxygen, which is crucial since water – the principal reservoir of oxygen in Jupiter ? was presumably the original carrier of the core-forming heavy elements and could make half of the core mass, or greater. The Galileo probe entered a five-micron hotspot – the Sahara Desert of Jupiter ? where water vapor was severely depleted. O/H was measured to be 0.4x solar in this site. It is unknown whether water is depleted everywhere on Jupiter or enriched like the other heavy elements. The Juno microwave radiometers will measure and map water to deep tropospheric levels in Jupiter in July 2016. It is only then one could assess whether Jupiter is indeed carbon rich and oxygen poor like the exoplanet hot Jupiter WASP-12b, or not. Even after the inventory of key heavy elements has been completed for Jupiter, comparison with the other gas giant, Saturn, is essential. However, with the exception of carbon, no reliable data exist on other heavy elements for this planet or, for that matter, the icy giant planets, Uranus and Neptune. Considering the fundamental importance of this science, which only entry probes can deliver, the US NRC Planetary Decadal Survey (Visions and Voyages, NRC, 2011) has recommended a Saturn probe as one of four candidate missions in the New Frontiers class and a Uranus orbiter and probe as one of four candidate missions in the flagship class for the 2013-2023 decade. Relevant publications may be downloaded from www.umich.edu/~atreya for personal use.

Keywords: Giant Planets, Jupiter, Saturn, Juno, Entry Probes, Extrasolar Planets

Key Words: Giant Planets, Jupiter, Saturn, Juno, Entry Probes, Extrasolar Planets
木星系探査ミッションESA-JUICE: 日本チームの参加
Exploration of Jovian System by ESA-JUICE Mission: Participation of Japanese Team

佐々木 嘉1*, 藤本 正樹 2, 国際共同木星総合探査 WG2
Sho Sasaki1*, Masaki Fujimoto 2, Jupiter Exploration WG 2

1 国立天文台, 2 宇宙科学研究所/JAXA
1National Astronomical Observatory of Japan, 2ISAS/JAXA

木星は地球の300倍の質量をもつ巨大ガス惑星で、強い磁場と磁気圏を持つ。ヨーロッパ宇宙機構(ESA)の木星系探査ミッション JUICE が今年5月に選定された。木星のガリレオ衛星、木星環、木星月面、木星の電気化学などの観測を行う。木星の磁気圏、太陽風との相互作用、木星のガリレオ衛星についても観測される。ESA-JUICE は木星の磁気圏、木星のガリレオ衛星、木星の電気化学、木星の電磁気現象、木星の天体物理学を含む観測を行う。ESA-JUICE は木星の磁気圏、木星のガリレオ衛星、木星の電気化学、木星の電磁気現象、木星の天体物理学を含む観測を行う。

初日は、ヨーロッパと日本のコミュニティから開始した国際共同計画EJSMには、JPL, JAXA, 皇家天文台, ISS, NASA, ESA, JPL, JAXA, などが参加する。ESA-JUICE は木星の磁気圏、太陽風との相互作用、木星のガリレオ衛星についても観測される。ESA-JUICE は木星の磁気圏、木星のガリレオ衛星、木星の電気化学、木星の電磁気現象、木星の天体物理学を含む観測を行う。ESA-JUICE は木星の磁気圏、木星のガリレオ衛星、木星の電気化学、木星の電磁気現象、木星の天体物理学を含む観測を行う。

<固体惑星科学分野>
- レーザー高度計Ganymede Laser Altimeter (GALA)
- 潮汐変形、回転変動計測によるガリレオ海溝、表層地形の生成機構
- <惑星大気科学分野>
- 紫外線観測器EUV/UV Grating Spectrometer (UVIS)
- 木星、ガリレオ衛星に存在するプラズマのダイナミクス解明
- サブミリ波観測器 Submillimetre Wave Instrument (SWI)
- 水星および海溝の生成機構、直接観測による木星大気循環構造の解明
- <磁気圏科学分野>
- プラズマ粒子観測器 CEPAGE HEP（高エネルギー電子・イオン），ISATIS（低エネルギーアイオン質量分析）
- 回転する巨大磁気圏である木星磁気圏（粒子）と衛星・ガリレオ衛星の相互作用
- 中性粒子観測器 PEP/JNA
- 木星磁気圏内の物質輸送において衛星が果たす役割、ガリレオ衛星構造
- プラズマ波動観測器 RPWI
- 木星磁気圏の粒子加速機構、磁気圏内のエネルギー供給

キーワード: 木星探査, 磁気圏, ガリレオ, エウロパ, 地下海, 水衛星
Keywords: Jupiter exploration, magnetosphere, Ganymede, Europa, interior ocean, icy satellites
Radio and Plasma Wave Investigation around Jupiter

Radio and Plasma Wave Investigation around Jupiter

笠羽 康正1, 三澤 浩昭1, 熊本 篤志1, 小嶋 浩嗣2, 八木谷 慎3, 木村 智樹4, 三好 由純5, 石坂 圭吾6, 土屋 史紀1, 小野 高幸1, 加藤 雄人1, RPWI Japan study team1

Yasumasa Kasaba1, Hiroaki Misawa1, Atsushi Kumamoto1, Hirotugu Kojima2, Satoshi Yagitani3, Tomoki Kimura4, Yoshizumi Miyoshi5, Keigo Ishisaka6, Fuminori Tsuchiya1, Takayuki Ono1, Yuito Katoh1, RPWI Japan study team1

1 東北大, 2 京都大, 3 金沢大, 4 JAXA, 5 名古屋大, 6 富山県立大
1Tohoku Univ., 2Kyoto Univ., 3Kanazawa Univ., 4JAXA, 5Nagoya Univ., 6Toyama Pref. Univ.

Future Jovian mission is now planned for 2020s.

One of its major objectives is the investigation of electromagnetic system connected and driven by Jupiter. Under the international collaborations, we have started the development for the small-sized radio sensor for this mission from 2011, by the aid of the Grant-in-aid of JAXA Payload Development etc.

We succeeded to establish the base technical elements for (1) light-weight rigid antenna with simple and reliable extension capability and (2) small-sized radiation-hard preamp with the highest sensitivity.

In any missions related to plasmas, electric field from DC to several 10s MHz has contributed to the remote-sensing and in-situ studies of dynamics and energetic interactions in the electromagnetic system, associated with remote optical measurements and in-situ particle and magnetic field sensors.

For the Jovian project, an Europe-USA-Japan joint team is formed for the plasma and radio wave studies. Especially in Jupiter, its radio wave is important as a remote sensing tool for the direct measurement of Jovian radio source regions distributing around the Jovian system, i.e., polar region, radiation belts, Io torus system, and Galilean satellites with thin atmospheres. We are involved for this team based on the high reputation of Plasma Wave Investigation (PWI) aboard the BepiColombo/MMO, and have developed the small-sized radio sensor package with antenna and preamp within the tightest resource limitations.

We investigated base technologies for (1) a 3-axial antenna with 2m length, extracting at the Earth orbit and can be kept during the long travel till the end of the mission on the orbit around Galilean satellite, and (2) a 3-axial preamp covering 10kHz-100 MHz with the highest sensitivity, enough radiation tolerance in Jovian environment, the hardest in the solar system, within the mass limit less than 200g. For the former, we established a simple extension mechanism based on the self-extracting thin BeCu and CFRP element, which is based on the combination of the key technologies in the SCOPE Z-axis antenna (STEM-type extension mechanism but with a complex motor system) and the sounding rocket antenna (self-extraction but with limited length, only 1 m). For the latter, under the collaboration with the IRF-Uppsala (Sweden) team, we established the key parts of the radiation-hard analogue custom IC technologies, in which the most difficult part was a relay in the package with high-impedance, small-sized, and high-reliability. In parallel, we also tested the high-sensitivity preamp BBM under the radiation hard condition, and proved that even in 200 krad the degradation of the noise level is only the twice, without critical linearity and sensitivity damages. In 2012, we are proceeding to the next phase, including the design of a backend receiver with direct sampling scheme with fast (100-125MHz) rad-hard A/D.

Since the small but reliable extension mechanism and electronics are not so much expensive, we can also consider the implementation to sounding rocket experiments. After the full establishment of this technology, we will be able to adopt it to any space radio and planetary missions in which the resource is very tight.

Keywords: Jupiter, Radio, Receiver, Antenna
非熱的中性粒子観測器による木星探査
Measurement low-energy energetic neutral atoms around Jupiter’s satellite

浅村 和史 1*, 二六喜文 2, 三好 由純 3, 坂野 井 健 4, PEP チーム 2
Kazushi Asamura1*, Yoshifumi Futaana2, Yoshizumi Miyoshi3, Takeshi Sakanoi4, PEP team2

1 ISAS/JAXA, 2 IRF, Sweden, 3 名古屋大, 4 東北大
1 ISAS/JAXA, 2 IRF, Sweden, 3 Nagoya U., 4 Tohoku U.

We are proposing a measurement of low-energy (10eV-3keV) energetic neutral atoms around Jupiter’s satellite especially Ganymede. Ganymede has its own intrinsic magnetic moment. There is considered to be a mini-magnetosphere around Ganymede because of interactions between plasma in Jovian magnetosphere and Ganymede’s magnetic field. However, its characteristics will be different from terrestrial one, since Alfvén mach number of upstream plasma flow (corotational plasma flow around Jupiter) is small. JNA (Jovian Neutral Analyzer) will reveal characteristics of Ganymede’s magnetosphere in terms of measurement of scattered/sputtered particles generated by precipitation of plasma particles onto Ganymede’s surface. Measurement of these particles will provide spatial distribution of plasmas in remote sense, since electric/magnetic field do not affect trajectories of neutral particles. JNA is a part of PEP (Particle Environment Package) led by Swedish Institute of Space Physics, which was proposed as potential instruments onboard JUICE mission.

We will discuss current status of JNA.

Keywords: low-energy energetic neutral atoms, Ganymede, magnetosphere, remote observation
EXCEED 計画と木星探査 (JUICE 計画)
The EXCEED mission and the next

Ichiro Yoshikawa

1 東京大学
1 The University of Tokyo

小型科学衛星 EXCEED が 2013 年夏に打ち上がります。12月には、ハッブル宇宙望遠鏡と地上の大型望遠鏡との木星の共同観測も計画されています。この発表では、EXCEED 計画の全容、木星観測キャンペーン、今後の木星探査計画への参画について話をする。

キーワード：極端紫外光、木星、木星探査計画 JUICE、小型科学衛星 EXCEED、惑星大気光
Keywords: EUV, Jupiter, JUICE, EXCEED, planetary airglow
The Submillimetre Wave Instrument (SWI) is an instrument proposed to form part of the scientific payload instruments for the JUpiter ICy moons Explorer (JUICE) mission of the ESA’s Cosmic Vision 2015-2025 program.

SWI is a very high spectral resolution (up to \( R = 10^7 \)), dual band (600 and 1200 GHz), sub-millimeter heterodyne instrument on the JUICE spacecraft, achieving 1000-2000 km spatial resolution on Jupiter’s disk and 0.5-1 km on icy satellites. SWI will determine the composition, structure and dynamics of Io’s atmosphere. On Europa, Ganymede and Callisto, SWI measurements will detect active regions, generally determine sources and sinks of the atmospheres, their interaction with magnetospheric plasma; the interaction of Ganymede’s magnetosphere with the Jovian magnetosphere will be derived.

SWI has four scientific targets as fellow: 1) the Jovian system with particular emphases on the chemistry, meteorology and structure of Jupiter’s middle atmosphere, and atmospheric coupling processes, 2) Characterize the regoliths, icy-crusts, atmospheres, and exospheres of Ganymede, Europa and Callisto, thereby providing important inputs for the exploration of their habitable zones, 3) Study Ganymede as a planetary object and possible habitat; study and explore Europa’s young icy crust in recently active zones, 4) Explore the Jovian system as an archetype for gas giants in characterizing the Jovian atmosphere and its satellite and ring systems.

SWI will measure Three-Dimensional of temperatures, winds (with accuracy of \( \sim 10 \) m/sec) and chemical species (e.g. CO, CS, HCN, H2O, CH4) in Jupiter’s stratosphere. The Icy moon measurement will be performed with water vapor, its isotope ratio, and ortho/para ratio in their tenuous atmospheres/exospheres. It will measure thermophysical and electrical properties of satellite surface/subsurfaces and correlate them with atmospheric properties and geological features. SWI will determine key isotopic ratios in Jupiter’s and satellite atmospheres, especially the deuterium-to-hydrogen ratio, diagnostic of the formation and evolution of Jupiter’s satellite system.

SWI is a instrument with a passive, heterodyne receiver for simultaneous observation in two submillimetre spectral bands, 530-601 GHz and 1082-1271 GHz. In combination with two high-resolution Chirp Transform Spectrometers (CTS), SWI obtains a resolving power v/dv of up to 107. The local oscillator is tunable to observe at any frequency within the bandwidth of the two receivers. SWI is equipped with a movable 30 cm telescope to change its viewing direction independent of the spacecraft orientation. In this presentation, the overview of the SWI mission will be introduced.
JUICE-SWI が観測ターゲットとする木星大気成層圏の力学と物質循環
Dynamics and material transport of Jupiter’s stratosphere as scientific targets of JUICE-SWI

黒田 剛史1*，佐川 英夫2，佐藤 隆雄3，笠井 康子2，JUICE-SWI チーム3
Takeshi Kuroda1*，Hideo Sagawa2，Takao M. Sato3，YASUKO KASAI2，JUICE-SWI Team3

東北大学, 2 情報通信研究機構, 3 宇宙航空研究開発機構・宇宙科学研究所
Tohoku University, 2 National Institute of Information and Communications Technology, 3 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

木星成層圏の大気科学について、欧州の JUICE ミッションに提案されているサブミリ波測器 (JUICE-SWI) により期待される観測的な貢献と絡めつつ、その概要を紹介する。

木星を初めとする巨大ガス惑星の大気は、惑星大気環境の形成・進化をこめるモノを地球型惑星大気とは異なった視点でより普遍的に理解しておく上で、また個々の惑星に特有の物理パラメーターを示す上で、重要不可欠な研究対象である。さらには惑星科学が太陽系内の視野を超えて、系外も含めた惑星大気を取り扱う日がまだもに近づきつつあるが、その過程で最初に理解が要求されるのは木星系外惑星である。これは我々にとって最も身近な存在である木星大気の徹底的解説なくして達成できるものではない。

木星の成層圏は可視の雲頂より上方 350km 以上に渡って広がっており、その領域の気圧は大体 10^{2} ～ 10^{-3} hPa である。木星の自転角速度は地球よりも高速で、その力学過程は成層圏の大気分子による放射過程と対流圏上部で発生され上方に伝播する波動の影響を受けており、特に 140m s^{-1} にも及び高密度の西風ジェットが北緯 23 度付近と北緯 5 度付近に見られ、準 4 年周期 (QO) と呼ばれる赤道東西風が約 4 年周期で変化する現象に認知されている。また CS、CO、HCN の微小量物質については、1994 年のジューエーカー・レビ第 9 異星に代表される外部天体の衝突による供給が示唆されている。水の存在も観測されているが、その起源を定量的に断定するには至っていない。

JUICE-SWI は、CH4、H2O、HCN、CO、CS といった木星成層圏に存在する微量物質を非常に高精度で観測することが可能である。また CH4 の吸収係数より鉛直温度分布やドップラー風速を求めることが可能である。CO と CS は化学的に安定なため、大気の流れを見るためのトレーサーとして用いることができる。これらの観測を通して、木星成層圏の力学過程・化学過程の理解が進むことが期待される。

キーワード: 木星、大気力学、大気化学、サブミリ波サウンド、JUICE
Keywords: Jupiter, atmospheric dynamics, atmospheric chemistry, sub-millimeter sounder, JUICE
Geophysics of Ganymede as revealed by orbiter missions: application to the JUICE mission

Hauke Hussmann

1 DLR Institute of Planetary Research

As indicated by the Voyager and Galileo missions, Ganymede is a very complex world:

(a) Ganymede is highly differentiated. With a dimensionless moment of inertia of 0.3115 [1] it is the most condensed solid-state body of the solar system. The moment-of-inertia value is consistent with interior structure models including an iron-rich core, a silicate layer, high-pressure ice layers, a liquid water layer, and an ice-I layer at the surface. Based on the Galileo gravity field measurements a set of models with different thicknesses of the layers can be constructed (e.g., [2]). The process of differentiation would be accompanied by global extension of the satellite because ice is more compressible than rock.

(b) Ganymede has a magnetic dipole field. Together with the Earth and Mercury, Ganymede is one of only three solid bodies in the solar system that generate a magnetic field in a liquid (outer) iron core [3]. Therefore present temperatures and heat flows of the core and/or compositional gradients must be sufficient to sustain a dynamo.

(c) The magnetic field data is consistent with induced fields generated in an electrically conducting salty global ocean beneath the ice-I layer [4]. This provides strong evidence for a present subsurface ocean on Ganymede. The latter would have strong implications on the tidal response of the satellite.

(d) Ganymede is locked in the three-body Laplace resonance with Io and Europa. Although the forcing of Ganymedes orbital eccentricity of ef = 0.0006 is weaker as compared to Io and Europa, scenarios of formation of the resonance and its implications for tidal heating must be consistent with the satellites orbital evolution (e.g., [5]) and present state.

(e) Ganymedes icy surface consists of two types of terrain exhibiting differences in albedo, surface age (through crater density), and surface morphology (e.g., [6]). Whereas the dark terrain is several Gyrs old the light terrain can be as young as about 400 Myrs. The different types of geologic activity may be a consequence of different energy budgets available from the interior during different regimes of thermal evolution.

(f) Ganymede bright terrain globally shows intense fracturing and tectonic resurfacing. In addition there is local evidence for cryovolcanic activity.

(g) Ganymede displays a great diversity of impact morphologies. Those are related to the thermal state of the icy crust at time of the impact and temperature dependent relaxation processes.

Starting from various scenarios of Ganymedes evolution that have been discussed in the literature to explain the unique features of the satellite we describe measurements by orbiting spacecraft that could constrain these theories. Application to ESAs JUICE mission will be shown. Emphasis is given on the geophysical aspects, i.e. interior structure and tidal deformation. The models are set into perspective by comparison with the neighboring satellites Europa and Callisto. Prospects to investigate the geophysics of Europa and Callisto with flybys are briefly discussed.

References:

Development of JUICE/Ganymede Laser Altimeter (GALA)

GALA is a diode, a laser, Japan's cooperation with European cooperation, and its main task is to realize the orbit of Ganymede. In this paper, the most important part is to describe the laser altimeter, which is used to measure the height of the surface of Ganymede. The laser altimeter sends a laser pulse to the surface of Ganymede and measures the time it takes for the pulse to return. This time is then converted into a distance, which is the height of the surface. The laser altimeter is a very important device for understanding the topography of Ganymede.

The laser altimeter is a complex system that requires precise engineering. The laser must be very stable and the mirror must be very accurate. The laser must also be able to operate in the extreme conditions of space. The laser altimeter is a key component of the JUICE mission and is essential for understanding the geology and geophysics of Ganymede.

The JUICE mission is a joint mission between Japan and Europe, and it is a key mission in the study of the outer planets. The mission is scheduled to launch in 2024 and is expected to return data to Earth in 2030. The JUICE mission will provide invaluable data for understanding the outer planets, and the laser altimeter will be a key component in this study.

キーワード: ガラ、ガニメデ、レーザー高度計

Keywords: Jupiter, Ganymede, Laser altimeter
Evolution and diversity of the large icy moons

Jun Kimura 1*, Kiyoshi Kuramoto 2

1 Center for Planetary Science (CPS), 2 Hokkaido University

Large icy moons in the solar system, Ganymede, Callisto, and Titan, have a similar size of Mercury but smaller bulk density (~2.0 g/cc) than the terrestrial planets, which indicates that the bulk composition is half water ice and half rocky material. However, there are quite different state on its surface and interior at present among these moons. Ganymede has globally-tectonic surface and completely differentiated interior having the central metallic core which generates the intrinsic magnetic field, while Callisto’s surface is saturated by the impact craters, suggestive of an old age, and its interior seems to be incompletely differentiated which is implied by a large value of the moment of inertia factor. Titan has an intermediate size, density, and moment of inertia between Ganymede and Callisto, and has experienced some internally driven geology. Although many studies have proposed hypotheses explaining this contrasting states between the two moons, none of these theories has been sufficiently convinced.

We construct a new model for the evolution of large icy moons, especially in order to explain the origin of surface tectonics and strongly differentiated interior on Ganymede and the different current state and history between Ganymede and Callisto. That is, "Dehydration model" of primordial hydrous silicate and metal-mixed core so that only Ganymede undergoes significant temperature rise inside allowing the separation of a conductive core and the global tectonics during its history. This model assumes that during the stage of accretion Rocky component is possibly hydrated because of the chemical reaction with liquid water generated by accretional heating. The similarity in reflectance spectra among hydrated carbonaceous chondrites and asteroids near Jovian orbit also implies that the constituent material of the icy moons has already been hydrated prior than their incorporation into circum-Jovian nebula in which the regular satellites accreted. After the end of accretion, primordial core starts to warm due to only the decay heating of long-lived radioactive elements. Once the dehydration starts to occur, the temperature of rocky core would increase more rapidly and exceed the melting point of the metallic component, and thereby metal segregates from rocky material. The difference of radiogenic heat and moon’s size between Ganymede and Callisto may have potential to create the dichotomy between two moons.

In addition, applicability of this model is not limited to Ganymede and Callisto but extends to other similar-sized icy moons, e.g., Europa and Titan, and an implication for the "Super-Ganymede" exoplanets will be addressed. If extrasolar planetary systems are analogous to our own, then icy moons could be the most common habitats in the universe, probably much more abundant than Earth-like environments which require highly specialized conditions that permit surface oceans.

Finally, we will propose a possible contribution to the JUICE (Jupiter Icy Moon Explorer) mission, which is planned by ESA (European Space Agency) to visit the Jovian system and will launch in June 2022 on an 11-year mission to explore the giant planet and three of Jupiter’s moons; Ganymede, Callisto, and Europa.

Keywords: satellite, thermal history, interior, tectonics, evolution, exploration
Formation Processes of Regular Satellites around Giant Planets

Takayuki Tanigawa

1 ILTS, Hokkaido University

Satellite systems around the giant planets in our solar system are commonly seen. They are thought to have formed in circum-planetary disks, which are believed to have existed around giant planets during their gas capturing growing stage.

In earlier works, the formation process of satellite systems has been considered based on a minimum mass subnebula (MMSN) model, in which satellites form from a disk that contains sufficient solid mass with solar composition for reproducing the current satellite systems (e.g., Lunine and Stevenson 1982), as an analog of the minimum mass solar nebula model (Hayashi 1981). However, it was suggested that the MMSN model has difficulty in reproducing current satellite systems around Jupiter and Saturn (Canup and Ward 2002). One of the severe problems is that the model leads to much higher temperature than that of H2O ice sublimation at the current regular satellite region, which means that ice, which is the main component of the satellites, cannot be used as building material of the satellites.

In order to overcome the difficulties of the MMSN-type models which assume a closed and static disk, alternative models have been developed. Canup and Ward (2002) proposed a model in which an accretion disk with a continuous supply of gas and solid is considered as a proto-satellite disk. This model reproduces ratio of total satellite mass to the parent planets’ mass for Jupiter, Saturn, and Uranus.

Recently, Crida and Charnoz (2012) showed that if a massive ring around a giant planet exists, it spreads outward by radial diffusion, which could produce regular satellites. This model can reproduce satellite masses and orbital radius simultaneously for Saturn, Uranus, and Neptune.

In this talk, satellite formation processes mainly of the two major hypotheses will be reviewed.

Keywords: satellite, moon, Jupiter, giant planets
Planetary tectonics: A new tool to judge the presence or absence of life on planets

丸山 茂徳1*, Dohm James1
Shigenori Maruyama1*, James Dohm1

1 東京工業大学 地球生命研究所
1 Earth-Life Science Institute, Tokyo Institute of Technology

Concept of habitable planet has been suggested around 1965 to discuss the possibility of presence of life on planets, because liquid water is major component of life, which has a tight stability field of T<100 degrees depending on pressure. Discovery of icy satellites of Jupiter, which may contain water under the icy surface, pointed to the possibility of presence of life there. Titan has a landmass, which is partly occupied by methane lakes, enveloped by CH4-rich atmosphere. If the landmass comprises rocky materials and an energy circulation system, such discoveries would certainly change the original definition of habitable planet.

Here, we propose a new tool of planetary tectonics as an index for the presence of life on planets. The phenomenon of life is possible only where there is a steady-state supply of nutrients, as well as water circulation and thermal energy. If these conditions are not satisfied, life will terminate. Considering these conditions, the Earth has only two life-sustaining places: (1) the surface of the Earth fed by a climate driven by the Sun, and (2) endogenic-influenced aqueous environments, best exemplified by both continental lake environments, which interact with basement structures such as rift systems and associated hydrothermal systems (the structures serve as conduits for the migration of volatiles and heat energy often related to magma), and deep-sea hydrothermal systems driven by MORB magma (though the biomass at mid-oceanic ridge is 10-6 times smaller than that of the surface of the Earth: negligibly small when compared to the continental lake environments). Understanding planetary tectonic systems that can generate such environments is significantly important in the search for life beyond Earth, including providing an index not only for finding life in our Solar System but also extrasolar planets.
Planetary Tectonic System (#1) and the Search for Life

Planetary Tectonic System (#1) and the Search for Life

丸山 茂徳¹, Dohm James¹*
Shigenori Maruyama¹, James Dohm¹*

¹ 東京工業大学 地球生命研究所
¹ Earth-Life Science Institute, Tokyo Institute of Technology

For life to initiate, diversify, and flourish, it requires a continuous nutrient supply, metabolism with continuous reactions to gain energy, and self-duplication. These conditions can be optimally met through a planetary tectonic system (PTS) that is composed of a nutrient-enriched continental landmass, an ocean, tectonic structures such as rift systems that act as conduits for the migration of volatiles and heat energy, and a sunlit planetary surface. This is realized through the evolution of the Earth, particularly in the case of the Cambrian explosion [1; also see Shigenori Maruyama, this conference]. The Cambrian explosion included a dramatic increase in the supply of nutrients and oxygen and resultant organic matter, including macroscopic hard-shelled animals that reached dimensions 1 million times larger than the Precambrian Eukaryotes.

The PTS to explain the Cambrian explosion is as follows [1, also see Shigenori Maruyama, this conference]: (1) the appearance of a landmass of nutrient-enriched materials resulting from a drop in sea-level related to plate tectonism including subduction of hydrated slabs into the mantle, (2) the global distribution of the nutrient-enriched continental materials into the ocean through wind (aeolian erosion and deposition) and water (e.g., fluvial erosion and transport along river systems); winds, for example, transported fine-grained materials from desert regions to the oceans, feeding the plankton life along the surface of the open oceans, and (3) the interaction among deep-seated basement structures, magma, and continental lakes which collectively yield life-thriving, hydrothermal systems (considered prime habitable environments on Earth and Mars; [1,2]).

The delivery of enormous amounts of nutrients drove the burst of photosynthesis which resulted in an increase of free oxygen in the atmosphere and a rapid increase of organic matter. Knowledge of PTS provides the road map for the search for life beyond Earth [also see Dohm and Maruyama?Planetary tectonic system #2, this conference].

References
ジュイーCE 搭載サブミリ波観測装置 SWI の概観と日本 の開発分担

Instrument overview and Japanese contribution to the development of Submillimetre Wave Instrument (SWI) aboard Jupiter

菊池 健一 1*, 笠井 康子 1, 落合 啓 1, 佐川 英夫 1, 西堀 俊幸 2, 佐藤 隆 雄 2, 黒田 剛史 3, 真鍋 武嗣 4, JUICE-SWI チーム 2
Kenichi Kikuchi 1*, Yasuko Kasai 1, Satoshi Ochiai 1, Hideo Sagawa 1, Toshiyuki Nishibori 2, Takao M. Sato 4, Takeshi Kuroda 3, Takeshi Manabe 4, JUICE-SWI Team 2

1 情報通信研究機構, 2 宇宙航空研究開発機構・宇宙科学研究所, 3 東北大学, 4 大阪府立大学

1 National Institute of Information and Communications Technology, 2 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3 Tohoku University, 4 Osaka Prefecture University

The Submillimetre Wave Instrument (SWI) is a very high spectral resolution, dual band (600 and 1200 GHz) instrument proposed to form part of the scientific payload instruments for the JUpiter Icy Moons Explorer (JUICE) mission. It will measure atmospheric temperature, winds, water vapor, methane and numerous other molecules with its high-resolution spectrometers on Jupiter, Ganymede, Callisto, Europa and Io.

The SWI is a passive heterodyne microwave spectrometer sensitive for radiation in the two frequency bands of 530-601 GHz and 1082-1271 GHz. Radiation is received through a submillimetre telescope with 30 cm aperture diameter, providing a spatial resolution of 400 and 200 arcseconds (FWHM) at 600 and 1200 GHz, respectively. Two independent double sideband receivers are used to obtain simultaneous observing capability in the two frequency bands. Each receiver is connected to its own high-resolution chirp transform spectrometer (CTS), providing a total bandwidth of 1 GHz at 100 kHz resolution. To allow a larger bandwidth coverage at lower resolution for surface emission measurements of Jupiter’s satellites, SWI is equipped with two autocorrelation spectrometers (ACS) (5 GHz bandwidth, programmable 256, 512, 758 or 1024 channels) and two continuum detectors (5 GHz bandwidth) as well. For radiometric calibration, the SWI instrument uses an internal blackbody as hot reference load and the cold sky as external cold reference load. The hot reference load is coupled into the beam internally via a calibration flip mirror. The cold sky is viewed by turning away the telescope from Jupiter respective the satellite under investigation.

Japanese team is responsible for the development of telescope unit consisting of antenna, scanning mechanism, and actuator control for SWI. In this poster, current idea and design of the telescope unit are briefly summarized.

The telescope consists of an off-axis parabolic primary mirror together with a hyperbolic secondary mirror (Cassegrain configuration). It is very similar to the design of the telescope for the MIRO instrument onboard of the Rosetta spacecraft. However, the surface accuracy of the primary reflector for SWI needs to be at least twice as good than for the MIRO reflector, because SWI observes in band 2 within a frequency range with approximately half the wavelength than at 557 GHz.

The actuator control electronics will control the movements of the 3 mechanisms (rotation of primary mirror, tilt of telescope sub-unit and movement of the calibration flip mirror). Radiation hard components will be used.

The design of the scanning mechanism is critical and thus still preliminary. The requirement is to have a pointing step size of less than 30 arcseconds, but to achieve a pointing knowledge of 5 arcseconds. To save mass the baseline approach is not to use an appropriate absolute angular encoder, but instead to aim mechanically for a 5 arcsecond step size and then to count steps relative to a single reference position. A dedicated test model for just the mechanism will be built to demonstrate the feasibility of this concept and to move the decision point for including an angular encoder (adds additional mass) as far as possible towards early phase of the instrument development phase.

キーワード: 木星, サブミリ波サンダーリ, JUICE
Keywords: Jupiter, submillimeter sounder, JUICE
Development of charged particle instruments for JUICE/CEPAGE and beyond

Satoshi Kasahara, Yoshifumi Saito, Takefumi Mitani, Takeshi Takashima, Kota Uemura, Masafumi Hirahara, Shoichiro Yokota

JUICE (JUpiter ICy moon Explorer) is a mission to Jupiter for the exploration of Jovian system including magnetospheric dynamics and plasma interaction with moons' surface/atmosphere/ionosphere. The spacecraft is supposed to accommodate scientific instruments for imaging, spectroscopy, sounders/radio sciences, and field and particles. The French institute IRAP leads the CEPAGE consortium (ChargEd Particle Analysers for Galilean Environments) to deliver a charged particle instrument package, in response to ESA's AO. This consortium is an international collaboration among several countries including Japan, and ISAS/JAXA will deliver a high-energy particle analyser (HEP) and a part of a low-energy ion mass analyser (ISATS). We have designed each instrument in detail so as to meet scientific goals for JUICE. Furthermore, since the design concept is toward broad application for limited spacecraft resources (such as small mass requirement and non-spin attitude control), we consider these instruments/techniques can be applied to various future explorations.
Accretion of Solid Materials onto Circum-Planetary Disks

Takayuki Tanigawa, Akito Maruta, Masahiro N. Machida

Regular satellites of the giant planets in our solar system are believed to be formed in circum-planetary disks around the planets during the final stage of the formation. Recent hydrodynamic simulations have revealed that gas disks around giant planets are inevitably formed in the course of gas accretion growth phase. However, in order to form satellites, solid materials are necessary in the gas disks and thus should also be accreted onto the circum-planetary disks from proto-planetary disks.

In this study, we performed orbital simulations of solid particles which is rotating in heliocentric orbits in order to investigate accretion efficiency onto circum-planetary disks under the influence of gas accretion flow. We found that the accretion efficiency of the solid particles peaks around 10m-sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10m size becomes lower because gas drag becomes less effective for larger particles. For particles smaller than 10m, the efficiency is lower because the particles are strongly coupled with the back-ground gas flow, which prevent from accretion. We will discuss satellite formation process based on the obtained accretion efficiency of solid particles.
Transferring Near Earth Objects (NEOs) into a spacecraft for manned interplanetary exploration

Chang Huai-Chien\textsuperscript{1,*}, Chun-Chien Wang\textsuperscript{2}

\textsuperscript{1}The University of Tokyo, \textsuperscript{2}National Taipei University of Technology

How will human can go beyond Mars to explore Jovian system and finally to reach to the Saturnian moon Titan, to search for life, on which several critical issues of manned interplanetary mission such as ECLSS supporting capability, food and water acquisition, propellant refuel, etc.?

Near Earth Objects or NEOs are comets or asteroids which have potential orbital intersection and closely approach to Earth. Despite many precursor researches have concluded that Near Earth Objects can be future resources of raw materials for building interplanetary spacecraft, this paper indicates utilizing Near Earth Objects itself would a possible transportation vehicle with habitat for manned interplanetary mission due to its plenty in amount and abundant resources (e.g. water ice, rare metals, etc.). Advantages of this proposal are: (a) To procure water by mining ice on NEOs surface or interior for human life support and ECLSS management.; (b) To obtain sufficient Hydrogen and any other possible substances for propellant needs; (c) The paper especially focus on designing of a habitat space by using regolith for an expedition crew (4 to 6 persons) on which NEOs provide efficient surface area to do so. Also, using regolith may provide a solution for cutting cosmic ray causing harmful result to human body while during interplanetary flight.

Candidate model is particularly to pick up an object from a branch of NEOs: Potential Hazardous Objects, known as their Minimum Orbit Intersection Distance (MOID) less than 0.05 AU, shorter period and relatively easily recognized by its high absolute magnitude. Although these celestial bodies have certain possibility to collide to Earth, we are currently monitoring and tracking their positions to ensure they will not come too close for sever damage. This technology may be helpful to locate suitable objects to meet our goal.

Mission profile is considered: (a) Sending a core module with a crew of 4 to rendezvous with PHOs target; (b) Mining and surface modification will be an on-site process, meanwhile, to produce propellant fuel and necessary material for plants to grow (e.g. food) and potable water; (c) During its flyby to Earth, new modules and crew are launched to rendezvous with the asteroid to extend habitat space; (d) To alter its orbit into Hohmann Transfer Orbit to proceed interplanetary flight course. Detailed sequence of asteroids selection and habitat design is included in full paper.

In this paper, reveals that transferring NEOs (near Earth comets or asteroids) into manned interplanetary exploration vehicle would be much reasonable not only is an alternative solution for avoiding designing massive space ship, carrying enormous amount of supplies (i.e. water, food) is unnecessary and cost reducible, but also it opens up a new possibility to procure asteroid resources for human space exploration purpose. This proposal is based on in-situ (in situation) methodology from technology readiness level of space architecture development progress.

In summary, although this research also points out issues that remain to be discussed in near future, it helps to establish further strategies to shape and to achieve certain goals on multidisciplinary efforts.

Keywords: NEOs, Asteroid mining, Human interplanetary exploration, ECLSS, Space settlements
This paper presents characteristics of short-term intense bursts of Saturn kilometric radiation (SKR) from 2005 to 2006 with the separation between northern and southern SKR. Our result shows the dependence of SKR bursts on rotational modulations of Saturn. This suggests that the internal process of the Kronian magnetosphere mainly drives SKR bursts. We also discovered that most of northern and southern SKR bursts occur independently of one another.

SKR is generated by electron beams accelerated along the auroral field lines via cyclotron maser instability, like auroral kilometric radiation (AKR) at Earth. Since this radiation is emitted near the local electron cyclotron frequency in their source, the altitude of the radio source can be derived from the spectra. At Earth, AKR spectra show the bursty variations characterized by a sudden increase of the main emission with the extension of their spectra down to lower frequencies, associated with substorms (magnetic reconnection) driven by external (solar wind) drivers. It means that the occurrence of such variations is independent of the terrestrial rotation phase. SKR shows the similar short-term bursts like AKR although they occur on a longer time scale (several hours). In the case of Saturn, its magnetotail activities are affected by both external and internal (planetary rotation) drivers [Cowley et al., 2004]. Jackman et al. [2009] suggested the link between the SKR rotational modulations and the magnetotail reconnections. On the other hand, SKR has the rotational modulations with north-south asymmetric periods [Kurth et al., 2008; Gurnett et al., 2009]. There should therefore be some difference between northern and southern SKR bursts if they reflect strength of the field-aligned current system with distinct two rotational periods in each hemisphere [Andrews et al., 2010].

In this study, we examined the relationship between the short-term intense bursts and the SKR rotational phases with northern and southern SKR spectra observed with the Radio and Plasma Wave Science [Gurnett et al., 2004] on board Cassini spacecraft from 2005 to 2006. During this period, Cassini was traveling in an equatorial orbit, which is suitable to receive radio emissions from both northern and southern polar region. Northern and southern SKR phases are defined based on rotational modulations of SKR from each hemisphere [Lamy, 2011]. We selected 17 short-term intense bursts in northern SKR and 36 in southern SKR with the criteria, which consist of the followings: (1) SKR flux densities at low frequencies and (2) SKR total power must be significantly higher than median values of those during about 60 hours before and after the time of an SKR burst. (3) There must be no spectral gap between SKR main and lower-frequency bands. The result shows that more than 60 percent of bursts took place around time when northern or southern SKR phase was from 300 to 60 degrees, respectively. It clearly suggests that the short-term SKR bursts occur in synchronization with SKR rotational modulations, and supports the result by Jackman et al. [2009]. We suggest that the internal process of the Kronian magnetosphere mainly drives SKR bursts. On the other hand, we got the result that only six pairs of northern and southern SKR bursts we identified took place almost simultaneously (within two hours), that is, there is an asymmetry between northern and southern SKR bursts.

We are also investigating the SKR bursts independent of the rotation, which should be driven by the external (solar wind) effects. In addition, we will compare the results obtained during the southern summer with those after the equinox in 2009 to examine the effect of the long-term variations of SKR. These analysis results will be also presented.