Diversity of MORB genesis within the uppermost mantle: an example from the northern Oman ophiolite

Norikatsu Akizawa¹, Shoji Arai¹*, Akihiro Tamura¹, Kazuhito Ozawa²

¹Earth Sciences, Kanazawa Univ., ²Earth and Planetary Science

Dunite bands and veins in the ophiolitic mantle peridotite are interpreted as fossil melt conduits within the suboceanic mantle. In particular, concordant dunite bands are possibly important as the melt conduits through which parental melts of MORB (mid-ocean ridge basalts) were transported to shallower mantle beneath the ridge axis. However, no detailed petrological data of concordant dunite bands and surrounding peridotites have been published. We conducted sampling of concordant dunite bands and its aureole from various "stratigraphic levels" in the mantle section from an estimated ancient-segment center and its end in the northern Oman ophiolite. They are various both in thickness (few millimeters to few meters) and in frequency of appearance. Dunite bands are almost pyroxene-free, and their orthopyroxenes, if any, are vermicular in shape.

Mineral chemistry shows systematic variations in the wall peridotites toward the dunite bands: (1) a decrease in Fo content (92 to 90.5) of olivines, (2) an increase in Cr/(Cr + Al) atomic ratio (0.5 to 0.6) and TiO₂ content (nil to 0.25 wt %) in spinels, and (3) an increase in Na₂O content (almost nil to 0.2 wt%) of clinopyroxene. In ambient residual peridotites, rare earth element (REE) patterns of clinopyroxene incline from light-REE (LREE) to heavy-REE (HREE) monotonously. The REE pattern of clinopyroxene in dunites and surrounding peridotites show various shapes, depending on the position, the segment center to end: gentle slope from HREE to LREE at the segment center, and U-shaped at the segment end.

We conducted calculation for REE enrichment in clinopyroxenes by using 1-D steady state modeling, which duplicates simple fractional melting process and influx melting process. The results indicate that LREE-enriched melts (E-MORB-like) and LREE-depleted MORB melts (N-MORB-like) were involved in formation of the present-day concordant dunite bands within the Oman mantle with various ratios of LREE-enriched melt/LREE-depleted melt; LREE-enriched melt/LREE-depleted melt ratios are high at the segment center, and they are low at the segment end. The primitive MORB melts have possibly changed to MORB through interaction with peridotites en route to the uppermost mantle, however the interaction degrees between the segment center and the segment end were different. The difference was caused by variation of temperature profile through the Mid-ocean ridge.

Keywords: Concordant dunite band, Oman ophiolite, MORB, melt/rock interaction
Paleogeodynamic setting of the Andaman ophiolite

Biswajit Ghosh 1*, Tomoaki Morishita 2

1 Calcutta University, 2 Kanazawa University

Dismembered bodies of Cretaceous ophiolite slices occur in the eastern part of the Andaman Island and continues further south in the Rutland Island. The mantle tectonites of this ophiolite suite are represented by a broad spectrum of variably depleted peridotitic rocks that hosts impersistentely developed podiform chromite and records a systematic variation from north to south. The restitic peridotite in middle- and north-Andaman mostly belongs to less-depleted, lherzolite dominated mantle that occasionally grades to clinopyroxene bearing harzburgite with development of thin layers and lenses of olivine-rich dunitic pods showing features of melt-rock interaction and irregular margins with the harzburgite. On the contrary, the mantle sequence in Rutland Island is characterized by depleted harzburgite to clinopyroxene-bearing harzburgite.

The chemistry of the disseminated residual chrome-spinels suggests that the mantle peridotites in the Rutland Island towards south are akin to arc peridotites of suprasubduction zone whereas those of north-Andaman are akin to less depleted peridotites. The massive chromitites of Andaman Island show bimodal distribution of Cr2O3 content. The high-Cr pods (54-60 wt.% Cr2O3) are documented from north-Andaman as well as in Rutland Island whereas the low-Cr pods (39-42 wt.% Cr2O3) are restricted only to north-Andaman. The coexistence of both the types of chromitites, high- and low-Cr in the same area from north-Andaman possibly reflects the spatial and/or temporal variations of separate melt intrusions produced through specific melting stages and emplaced in different sub-arc mantle domains during the opening of a back-arc basin in a suprasubduction zone environment. In the late Mesozoic, therefore, a replica of the present day geodynamic features with an arc-back arc setting existed along the eastern periphery of the Indian subcontinent and we infer that an arc setting of that paleogeodynamic configuration occurred towards south which might have gradually shifted away from the trench towards north and gave rise the back arc setting. This behavioural change in subduction kinematics may have a direct link with the rotation of the plates in response to oblique subduction in the Andaman region. Therefore, this directional change in chrome-spinel composition may reflect the spatial and/or temporal variations linked to the melting history where the same sliver of oceanic mantle underwent different styles of melting in different tectonic settings at different points in time.

Keywords: Andaman Ophiolite, Chromitite, Mantle, Geodynamic setting

キーワード: Andaman Ophiolite, Chromitite, Mantle, Geodynamic setting
Ocean ridges are segmented into various scales with a hierarchy, from the biggest 1st-order to the smallest 4th-order segments. These segment structures control magmatic processes beneath ocean ridges in respect to upwelling mantle, partial melting, and magma delivery system. However, systematic studies on the segment control for the magmatic processes are few at present ocean ridges due to difficulty to obtain samples from different depths. Therefore, studies of ocean ridge segmentation in ophiolites would bring significant information to understand magmatic processes beneath ocean ridges. Because, precise 3-D architectures from mantle to the uppermost extrusive layer and their lateral variations would be determined in ophiolites. We have studied northern Oman ophiolite where a complete succession from mantle peridotite to the uppermost extrusives is well exposed. Miyashita et al. (2003), Adachi and Miyashita (2003) and Umino et al. (2003) proposed a segment structure in the northern Oman ophiolite; Wadi Fizh area is regarded as northward propagating tip of ridges based on geological lines of evidence (Adachi and Miyashita, 2003). On the other hand, Wadi Thuqbah area, about 25 km south to Wadi Fizh, is regarded as a segment center based on the thickest Moho transition zone, well developed EW-trending lineations in the MTZ and layered gabbro and comparatively primitive compositions of layered gabbros. Furthermore, the southern margin of the Hilti block, about 40 km south to Wadi Thuqbah, is assumed to be the segment end, based on a regional compositional variation of sheeted dike complex (Miyashita et al., 2003).

The bulk rock compositions of sheeted dike complex show systematic variations along the ridge segment; both highly evolved and less-evolved compositions appear at northern and southern segment margins, respectively, while narrow and uniform mildly evolved compositions appear at the segment center. This is interpreted by that larger and more persistent melt lenses at the segment center but much smaller and more transient melt lenses at the segment margins due to a difference of thermal conditions. At the larger and more persistent melt lenses, multiple magma mixings suppress advance of fractional crystallization and resulted in comparatively uniform mildly evolved melts. On the contrary, at the smaller and transient melt lenses at the segment margins, more intensive fractional crystallization resulted in highly evolved melts due to cooler conditions. On the other hand, primitive melts without stagnant in the melt lenses may extrude at the segment margin because of absence of the melt lenses. Thus, both evolved and primitive melts may be produced at the segment ends.

We have also examined along axis variations of the mantle-crust transition zone (MTZ) in the northern Oman ophiolite. Systematic variations of thickness of the MTZ are apparent; very thin at the segment margin (ca. 10 m), intermediate at the intermediate locations (ca. a few tens m) and thick MTZ at the center (ca. 250-300 m). Also mode of occurrence just beneath the MTZ is variable depending the location in the segment architecture. Abundant gabbroic pods and veins are found in the harzburgites just beneath the MTZ at the segment margins, but they are very few at the segment center. These lines of evidence show that the melt extraction from the upper mantle to the crust is more efficient at the segment center. On the contrary, melt extraction is inefficient at the segment margins, resulting in stagnant and crystallization of melts in the upper mantle at the segment ends.

References

Keywords: oceanic crust, magmatism, MORB, ocean ridge segmentation, Oman ophiolite

キーワード: 海洋地殻, 火成作用, MORB, 海嶺セグメント構造, オマーンオフィオライト
IODP 1256D 孔のシート状岩脈の帯磁率異方性と岩脈の貫入プロセス
AMS fabrics and emplacement processes of sheeted dikes in IODP Hole 1256D

安間了1*, アンドレッセ・ヴェロソ2, 山崎俊雄3
Ryo Anma1*, Eugenio E. Veloso2, Toshitsugu Yamazaki3

1 独立行政法人海洋研究開発機構, 2 北カトリコ大学, 3 東京大学大気海洋研究所

Faculty of Life and Environmental Sciences, University of Tsukuba, Universidad Catolica del Norte, Atmosphere and Ocean Research Institute, The University of Tokyo

パナマ沖赤道太平洋に位置する 1256D 孔は、海洋地磁気 C5Br と C5Bn.2n 境界 (15.16 Ma) に位置する玄武岩層からシート状岩脈群 (Sheeted Dike Complex: SDC) を掘り抜き、岩脈状あるいはレンズ状の貫入形態をもつ幅数十メートルの 2 枚の斑岩岩脈に到達した。これらの斑岩岩脈の周囲は、熱変成を受けて granoblastic な組織を持つ含斜方輝石ドレライトからなり、最下部は海洋地殻第 3 層の上部境界付近まで到達したと考えられる。斑岩岩脈が分割されたジルコンは15.0 ~ 15.2 Ma の加積平均を示し、上位の玄武岩層・SDC が負の磁極性を持つのに対して、下位の斑岩岩脈と含斜方輝石ドレライトは正の磁極性を持つ。これは、1256D 孔は垂直から 5 度西に傾いているため、掘り進む中で C5Br 海洋地殻から C5Bn.2n 海洋地殻に移行したか、斑岩層がやや若い年代を示すことから初生的な海洋地殻磁気構造が斑岩層の貫入とキュリー点温度を超える熱変成によって変化されたものと思われる。

C5Br 海洋地殻の SDC の貫入プロセスを推定するため、上下方向が認識できるコア試料から岩石磁気測定用のキーパブル試料を系統的に採取し、帯磁率異方性 (Anisotropy of Magnetic Susceptibility: AMS) の測定を行った。上下方向が認識できるコア試料で、掘削パイプの中で回転軸を中心に回転しているため、試料面を基準として測定した AMS 方位を地理学的方位に復元する必要がある。試料は掘削時の再磁化の影響をうけているため、残留磁化方位を交流消磁曲線 (0-80 mT) の高保持力成分あるいは endpoint から求め、SDC は negative polarity を保持しているものの仮定して、AMS 異方性とコア中に観察された主な構造方位の復元を行った。AMS に寄与する磁性鉱物は、主に擬単晶磁区構造を持つ磁鉄鉱である。

SDC から得られた帯磁率異方性構成の長軸 (Kmax) は水平で貫入面に平行する傾向にあるが、短軸 (Kmin) は鉛直方向に極大値をもつ。このことは、マグマが水平方向に流動したこと、貫入後のマグマが充分に暖かかった時期に drain back あるいはテクトニックな引張の影響を受けて、短軸が貫入面にたいして直交する本来の AMS ファブリックが変化されたものと解釈できる。シート状岩脈縁に発達する微細構造も貫入面に直交する引張を強く示唆する。

キーワード: シート状岩脈, 高速拡大海域, 帯磁率異方性, 貫入プロセス
Keywords: sheeted dike complex, fast-spread-rate crust, AMS, emplacement processes
The Oman ophiolite is a sliver of the Neo-Tethys oceanic lithosphere obducted onto the Arabian plate during the late Cretaceous time. Lippard et al. (1986) classified the felsic rocks in the Oman ophiolite into three stages: high-level intrusive rocks of axis stage, late stage intrusive rocks, and younger biotite granites associated with emplacement stage. Rollinson (2009) described similar classification of the felsic rocks in the Oman ophiolite, and discussed petrogenesis of these felsic rocks.

The axis stage felsic rocks characteristically intrude into the boundary between lowermost sheeted dike complex and upper gabbro. We investigate felsic rocks intrude into the boundary between lowermost sheeted dike complex and upper gabbro in Wadi Rajimi, Wadi Khabiyat, and eastern margin of the Lasail complex. The base of the sheeted dikes are infiltrated by quartz dioritic vein networks, which sometimes occurs as pockets and patches. In some places, sheeted dikes are composed of hornblende and pyroxene hornfels cut by quartz dioritic vein networks. These occurrences resemble to the anatectic migmatites of axial magma chamber roof exposed in the Troodos ophiolite, Cyprus, described by Gillis and Coogan (2002). They describes disequilibrium melting models to explain relatively lower REE concentrations in axis stage felsic rocks. Incompatible element concentrations sometimes lower in the quartz dioritic vein compared with the values predicted by equilibrium melting of sheeted dikes, this discrepancy can be explained by disequilibrium melting model. Disequilibrium melting may play a significant role on the petrogenesis of axis stage felsic rocks.

Lasail plutonic complex (4.7 x 3.8 km), as a typical example of late stage intrusive rocks, is located to the south of Wadi Jizi, and intrudes into the base of V1 volcanic rocks and sheeted dike complex. The Lasail plutonic complex consists of various rock types ranging from ultramafic cumulates to tonalite, and is associated with minor amounts of axis stage gabbro to quartz diorite. Petrochemical evidence suggests that the massive gabbro 2 was formed by the partial melting of residual MORB mantle which is contaminated with slab melt derived from the axis stage rocks interacted with seawater. In addition, petrogenesis of felsic rocks in the Lasail complex can be explained by the partial melting model of pre-existing layered gabbro.

Small intrusive bodies of young biotite granites and tourmaline leucogranites are intruded into harzburgite in the upper part of the mantle sequence at the west of Zaymi, upper stream of the Wadi Fizh. Chemical compositions indicate the analysed granitic rocks were largely minimum melts that crystallised at variable aH_2O and pressures around 2 to 4 kbar. Petrochemical modelling suggests that the granitoids formed largely by the dehydration melting of muscovite rich metasediments of ophiolitic metamorphic sole similar to the model of Cox et al. (1999).

U-Pb zircon ages analyzed by LA-ICPMS are 100 +/- 2 and 99 +/- 2 Ma for late stage tonalite and 100 +/- 1 Ma for axis stage quartz diorite (Tsuchiya et al., 2013). These ages are slightly older than the ages reported for felsic rocks in the Oman ophiolite (ca., 95 Ma; Tilton et al., 1981; Warren et al., 2005), and suggest that the conversion from ridge stage to detachment stage took place rapidly. If two diverging plates moved from divergent hemisphere to convergent hemisphere, divergent boundary (ridge) switches to convergent boundary (detachment or subduction) in a short time span, and very rapid change from divergent to convergent plate boundary may occur (Niitsuma, 2010). The Oman ophiolite may be a rare example of rapid conversion from divergent hemisphere to convergent hemisphere.
ヘルス ディープの火成岩地殻、345航海成果
Hess Deep Plutonic Crust, Expedition 345

雪助様さん1*, Gillis Kathryn2, Klaus Adam3, 国際海洋掘削 345 探検隊 乗船研究者一同 4
Jonathan Snow1*, Kathryn Gillis2, Adam Klaus3, Shipboard Scientific Party IODP Expedition 3454

1 ヒューストン大学, 2 ビクトリア大学, B.C., 3 テキサス A&M 大学, 4 国際海洋掘削 345 探検隊
1Univ. Houston, 2Univ. Victoria, B.C., 3Texas A&M Univ., 4IODP Expedition 345

本発表では、平成 24 年 12 月 11 日～平成 25 年 2 月 12 日に行われた IODP EXP. 345 の Hess Deep 掘削の速報を行う。

キーワード: 高速拡大海嶺、ヘルス ディープ、国際海洋掘削、海洋プレート、下部地殻
Keywords: Fast spreading Ridge, Hess Deep, IODP, Oceanic Plate, Lower Crust
エチオピア巨大火成岩区ラリレバ地域の高Tiピクライトについて
High-Ti picrite from the Lalibella area, Ethiopian LIP

石渡 明1*, デレジェ・アヤレュ2, Desta Minyahl Teferi1
Akira Ishiwatari1*, Dereje Ayalew2, Minyahl Teferi Desta1

1 東北大学 東北アジア研究センター, 2 エチオピア・アジアアベハ大学
CNEAS, Tohoku University, 2Addis Ababa University, Ethiopia

エチオピア高原の広範囲において、新生代後期の約 100 万年間に、地殻の広域的な隆起を伴って体積 250,000 km3 に達する洪水玄武岩溶岩が噴出し、その末期には流紋岩の溶岩・火砕流の噴出や玄武岩団状火山の形成があなって巨大火成岩区（LIP）が形成された。その後、中新世から現在までは地殻中の前部やアファーカ三角地帯で火山活動が継続し、大陸分裂が進行している。地殻帯西部の洪水玄武岩は地域によって化学組成が異なり、西部（内陸側）では低 Ti, 東部（地殻帯側）では高 Ti の傾向があるが、ほぼ同時期に噴出した。本 LIP におけるピクライトの産出は稀であり (Beccaluva et al. 2009; J. Petrol.; Rogers et al. 2010; EPSL)，高 Ti 玄武岩と互層する溶岩として Lalibela 地域の Dilb 道路沿いに分布する。世界遺産になっているエチオピア正教（コプト教）のラリレバ教会はピクライト溶岩をくり返して作られている。ピクライトは最も未分化なマントル起源溶岩かつそのようなマントルからのかんらん石集積岩として火成作用の重要な研究対象である。今回はこの地域で採集したピクライト質玄武岩 3 試料を分析した。かんらん石斑晶はFo77.7～88.4でMgに富むものは0.3〜0.4wt%のNiOを含む。単斜輝石はMg92〜88で0.8〜2.9wt%のTiO2を含む。スピネルはCr#79〜84,Mg#13〜51,Fe3+/#11〜26,TiO2=3.6〜7.0wt%,斜長石はAn60程度で、他に不透明鉱物としてチタン鉱物が含まれる。かんらん石の最大Fo 値からみてマントルかんらん岩と平衡に存在し得る未分化マントルに近い。鉱物化学組成で特徴的なのはスピネルの高いCr#である。海洋 LIP 起源と考えられる横断広帯のピクライト (Beccaluva et al. 2012; Geology) のスピネルCr#は平均56(44〜67)であり、美濃太田帯のそれは38〜67であって、80を超えるようなスピネルは産しない (Ichiyama et al. 2006; Lithos; Koizumi and Ishiwatari, 2006; Isl. Arc)。一方、大陸の層状貫入岩体のスピネルのCr#が高いことはよく知られている。高 Ti 系列のLIPマグマは海洋地域も産するが、スピネルの高Cr#はエチオピア LIP の大西洋的性格をよく示しており、大陸下マントルの起源についても示唆を与える。

キーワード: ピクライト, 洪水玄武岩, 高Crスピネル, 大陸下マントル, 大陆分裂, 海洋地殻形成
Keywords: picrite, flood basalt, high-Cr spinel, subcontinental mantle, continental rifting, oceanic crust formation
Possible lateral variation of seismic anisotropies in the oceanic lithosphere due to an active mantle flow

Katsuyoshi Michibayashi 1*, Ayaka Onoue 1

1 Department of Geosciences, Faculty of Science, Shizuoka University

Crystal-preferred orientation (CPO) is a common feature of peridotites and is developed during intense homogeneous plastic deformation of peridotitic minerals with a dominant slip system. Whereas an olivine CPO classification (A, B, C, D and E types) has been proposed by Karato and co-workers to illustrate the roles of stress and water content as controlling factors of olivine slip systems (e.g., Karato et al., 2008 Annu. Rev. Earth Planet. Sci.), an additional CPO type (AG) has also been proposed in recognition of its common occurrence in nature (Mainprice, 2007 Treatise on Geophysics). AG-type has been experimentally formed in sheared partially-molten samples, in which a-axes of olivine grains are aligned predominantly normal to the shear direction, rather than parallel to it (Kohlstedt & Holtzman, 2008 Annu. Rev. Earth Planet. Sci.). Thus, we can expect the development of AG-type olivine fabrics to be related to the occurrence of melt during deformation, most likely in the vicinity of mid-ocean ridges, where strong upflow is related to active mantle ascent (Nicolas et al., 2000 Marine Geophysical Researches; Michibayashi et al., 2000 MGR). Results from our analysis of peridotites from the Hilti mantle section of the Oman ophiolite show that olivine in that section is dominated more commonly by AG-Type than A-type CPO. This section preserves subhorizontal uppermost mantle lithosphere (Michibayashi & Mainprice, 2004 Jour. Petrology; Onoue & Michibayashi, 2013 JpGU abstract). Since olivine contains intrinsic elastic anisotropies, the development of CPO within peridotite during plastic deformation at mid-ocean ridges gives rise to seismic anisotropy in the upper mantle. Seismic properties of AG-type olivine fabrics reveal that whereas Vp velocity is maximum parallel to the flow direction (X) and minimum normal to the flow plane (Z), the intermediate direction (Y) has relatively higher Vp velocity than the median velocity. This feature of AG-type fabric is different from that of A-type, which occurs commonly under melt-free conditions, resulting in the different degrees of seismic anisotropies between AG-type and A-type. Thus, we propose, based on our results for the Oman ophiolite, that the intensity distribution of seismic anisotropy in the uppermost mantle could vary laterally depending on various strength of mantle ascent along a given segment of mid-ocean ridges in conjunction with various degree of melt impregnation.

Keywords: Olivine faries, Seismic anisotropy, melt, segment center, mid-ocean ridge
MoHole to Mantle: Project M2M

Susumu Umino, Scientific Party M2M

1 Department of Earth Sciences, Kanazawa University, 2 International MoHole Science Group

Sampling a complete section of crust and shallow mantle was the original motivation for scientific ocean drilling, since "Project Mohole (1958-1966)". With development of the Japanese riser-drilling vessel Chikyu, the aspirations of generations of Earth scientists to drill completely through the oceanic crust, and through the Moho into the upper mantle, have moved into the realm of technical feasibility.

Although only 20% of modern mid-ocean ridges are fast-spreading (>80 mm/yr), more than 50% of the present day seafloor (~30% of Earth's surface), and the great majority of crust subducted into the mantle during the past 200 M.yr was produced at fast spreading ridges. As a plate moves away from the ridge, seawater entering through fractures deep into the crust and the uppermost mantle is heated to become reactive hydrothermal fluid that hydrates and exchanges materials with the rocks and returns to the ocean. While being altered by hydrothermal fluids, the crust and mantle become extensive habitats for microorganisms. Water recycled into the mantle by the subduction of hydrated plate reduces the mantle viscosity and melting temperature, allowing continuous mantle convection and plate tectonics, providing the key reason why Earth is different from the other terrestrial planets in the solar system (e.g. Venus), and is a key ingredient for the formation of arcs and continents.

Because of the relatively uniform architecture of fast-spreading plates, understanding of mantle and crust genesis and evolution at one site can be extrapolated to a significant portion of Earth's surface with some confidence. Importantly, we have well developed theoretical models of contrasting styles of magmatic accretion at intermediate to fast-spreading ridges, which can be tested using samples recovered from cored sections of ocean basement. Therefore, the goal of the currently proposed project "MoHole to Mantle (M2M)" is to sample, as continuously as feasible, the entire crust, Moho and shallow mantle peridotites, in oceanic crust and mantle formed at a fast-spreading rate. Drilled cores will be used to test models of crustal accretion and melt movement, to resolve the geometry and intensity of hydrothermal circulation, and to document the limits and activity of the deep microbial biosphere. After completion of drilling, coring, and logging, the MoHole will be used for experiments, including vertical seismic profiles, and long-term geophysical and microbiological monitoring. Instrumenting the MoHole will eventually be a key, last-stage goal. Hence, the sub-sea equipment and borehole should be constructed to accommodate observatory science (e.g., fluid monitoring, and microbiology incubation experiments).

Based on the scientific requirements and technological constraints, three regions have been identified as potential MoHole project areas: 1) Cocos Plate; 2) Off Southern and Baja California (including the original site of project Mohole); and, 3) North of Hawaii.
Paradise Lost: Interpreting peridotites from oceanic ridges

Peter Kelemen

Lamont-Doherty Earth Observatory, Columbia University

Keywords: Mid-Ocean Ridge, Melting, Melt migration, Peridotite, Clinopyroxene
N.Qaidam山地・勝利口橄欖岩と海洋底岩石に見られる塩素角閃石の比較
Cl-rich amphibole in the Shenglikou peridotite, N.Qaidam Mountain and its comparison with Cl-amphiboles in oceanic rocks

苗村康輔1*, 楊建軍2
Kosuke Naemura1*, Jianjun Yang2

1 東京大学大学院理学系研究科地球惑星科学専攻, 2 中国科学院・地球与地球物理研究所

Department of Earth and Planetary Science, The University of Tokyo, 2 Institute of Geology and Geophysics, Chinese Academy of Science

下部地殻や上部マントルで活動する流体の中でも，とりわけ高塩濃度流体が注目されている。その理由として、
(1) 沈み込み帯深部でスラブから放出される深部流体は高塩濃度を持つこと。
(2) 物理探査（magnetotelluric）により調べることができる。
(3) 高塩濃度流体は流体中のトレース元素の溶解し，輸送する能力に長く
などの理由が挙げられる。

さらに沈み込みプレート内地震の分布が表面から50km以深まで及ぶことは，プレート内の上部マントル深度にも含
水鉱物が形成されていることが示唆される。しかし，このようなプレート下マントルに流体流を持ち込む機構は十分に
理解されていない。本発表では塩素流体に富む上部マントル物質の一例として，中国北部の勝利口橄欖岩を紹介する。

勝利口橄欖岩は，N.Qaidam超高圧変成帯に露出するザクロ石橄欖岩であり，大部分が輝石に富むザクロ石レール
ゾライトで構成され，少量のダイナイト・輝石レイヤーを含んでいる。塩素に富む含水鉱物組み合わせは，高圧のザクロ
石橄欖岩共生中に包有物として観察される。ザクロ石中には，粗粒のスピネル・角閃石（Cl-rich Ti pargasite）+ 斜輝輝
石→sodium gedriteと細粒な浮泥石 + Ti-poor ホルンブレンド+アパタイト，Fe-Mg 角閃石（anthophyllite），アパタイト，タ
ルク，スピネル，石墨と NaCl スカボライト（marialite）の鉱物組み合わせが観察され，それぞれ超高圧変成作用以前のス
ピネル橄欖岩相および浮泥石橄欖岩相で形成されたと考えられる。一方で単斜輝煌石中には，塩素を含む角閃石（トレ
モライト–ホルンブレンド）+ 蛇紋石・浮泥石 Ca-rich ザクロ石（uravovite, andradite, grossular）の鉱物組み合わせが
見られ，lizarditeの存在は非常に低温条件（<400C）で形成したことを示唆する。

その後，勝利口橄欖岩は超高圧変成作用を被ったと考えられ，塩素に富む含水鉱物がザクロ石橄欖岩共生へ変
化したと考えられる。このザクロ石橄欖岩共生の鉱物組み合わせは，ザクロ石 + 単斜輝石 + 斜輝輝石の方からとされる。
地質酸化圧力気を適用した結果，ザクロ石共生の鉱物組み合わせの平衡条件は790 C/4.1 Ga (♀0.3)と推定された。

ザクロ石橄欖岩の鉱物組み合わせは，最後の減圧・冷却ステージで後退変成作用の影響を受けて，ザクロ石はCaに乏し
いCa角閃石（paragelite, Cl<0.1 wt. %）→スピネルに置換され，単斜輝石もClに乏しいCa角閃石（tremolite-hornblende）
に置換されている。

以上の結果から，勝利口かららん岩は超高圧変成作用以前に高塩濃度流体による汚染を受けたことが示唆され
る。これらのデータは地質学的背景に新しく解釈される。

N.Qaidam超高圧変成帯を構成する塩基性岩（eclogite）は，約800Ma以前にロディニア超大陸分裂（リフト帯
形成）に伴って形成された海洋リノソフアの断片だと解釈されている。この文脈に従うと，勝利口橄欖岩はロディニ
ア超大陸マントルが，大陸分裂に伴い海洋底に浮上したものだと考えられる。このリフト帯において，勝利口橄欖岩は
海水を起源とする高塩濃度流体に海水底変質を被ったと考えられる。その後，約460Maに海洋底が閉じ大陸衝突運
動が起こり際に，勝利口橄欖岩は100km以深まで沈み込み，ザクロ石橄欖岩へ相転移したと考えられる。

本研究では，さらに勝利口橄欖岩の塩素に富む角閃石と，現在の広大（海嶺）やリフト帯に見られる塩基性・超
塩基性岩中の角閃石の比較を行った。角閃石の水酸基体を置換する塩素の量から，共存する流体の塩素濃度を推定す
ることが可能である。比較結果から，勝利口橄欖岩において，初期のスピネル橄欖岩相当深度（深さ25km以深）で活動
する流体の塩濃度は約40 NaCl mol. %程度と非常に高かったことが示唆された。この結果は，リフト帯において海水起
源の高塩濃度流体が上部マントル深度（25km以深）まで浸入できることを示した結果である。現在のリフト帯である大
地塊に見られるザクロ石橄欖岩においても，高塩条件下の高塩濃度・流体活動が起きていることが知られている。これ
らの事実は，リフト帯において海水がマントル相当深度にまで入り込み，リソソフェア深部の汚染を引き起こす可能性
を示唆する。この機構は理解することは，プレート深部に含水鉱物を形成するメカニズムを解明する上で非常に重要な
手がかりとなる。

キーワード：造山型橄欖岩，ロディニア超大陸，ツァイダム地塊，海洋性橄欖岩，熱水変質，塩水
Keywords: orogenic peridotite, Rodinia super continent, Qaidam craton, oceanic peridotite, hydrothermal alteration, brine
沈み込むプレート内で起こる熱水循環を考慮した沈み込み熱帯モデルの構築と、その日本近海の熱流量異常への応用

Thermal subduction-zone model including hydrothermal circulation in an aquifer that thickened toward the trench axis

川田 佳史1*, 山野 誠1, 島 伸和2
Yoshifumi Kawada1*, Makoto Yamano1, Nobukazu Seama2

1 東京大学, 2 神戸大学

南海トラフ室戸沖や日本海溝三陸沖の海溝海側で観測されている高熱流量異常の原因と、その地震発生帯温度への影響を明らかにするための数値計算を行った。沈み込み帯の地震活動は温度の影響を何らかの形で被っているため、沈み込み帯深部の温度構造は地震活動を理解するための鍵となる。

先行研究の Spinelli and Wang (2008) によると、沈み込んだプレートの最上部にある厚さ一定の透水層内で熱水循環が起こることで、高熱流量を作ることができる。沈み込んだ後の透水層内の熱水循環は沈み込み帯深部から海溝付近へと熱を汲みあげることで、沈み込み帯深部の温度は熱水循環によって最大 1000℃ 程度下がる。ただし、通常考えられている厚さ 500 m 程度の透水層の内での熱水循環を説明するためには、海溝軸並みの浸透率 10^{-9} m^2 が必要になるという難点がある。

本研究では、プレート最上部にある V_/Vₚₙ が大きい領域が海溝に向かって厚くなるとの観測結果 (Fujie et al., 2012, 2013) を受け、海洋地殻の透水層の厚さが海溝に近くなるほど厚くなるモデルを考えた。典型的には、海側 150 km で 500 m 厚の透水層が、海溝に向かって 3000 m 厚となるとした。数値計算により、このモデルは 2 種類の熱水循環を引き起こすことが分かった。1 番目に、透水層直下の熱を上方に汲みあげる循環が起こる。この循環は透水層が厚くなるプレートに依存するが、浸透率にはあまり依存しない。このとき、厚くなりつつある透水層の直下で温度が低下し、その代わりに透水層の直下で温度が増加する。この循環は沈み込んだ後のプレート温度にはほとんど影響がない。この循環は、透水層の浸透率が典型的なプレートの値 10^{-12} m² で熱流量異常を説明できる程度に起こる。日本海溝の熱流量異常はこの循環で説明できる。2 番目に、特にプレート年代が若い場合には、Spinelli and Wang (2008) と同じく、沈み込んだ後の透水層内の熱水循環が起こる。Spinelli and Wang (2008) では高い浸透率が必要であったが、このモデルでは、透水層の浸透率が典型的なプレートの値 10^{-12} m² で熱流量異常を説明でき、Spinelli and Wang (2008) モデルの難点を解消できる。この循環により、南海トラフの熱流量異常が無理なく説明できる。

キーワード: 熱流量, 温度構造, 沈み込み帯, 洋海プレート, 地震発生帯, 熱水循環

Keywords: heat flow, temperature structure, subduction zone, oceanic plate, seismogenic zone, hydrothermal circulation
海嶺側面でおきるプロセス：大西洋 North Pond 研究から
Ridge flank processes at North Pond, Mid-Atlantic Ridge

関顧 狼玩具 1*, Katrina Edward2, Janis Thal1, Lotta Ternieten1
Wolfgang Bach1*, Katrina Edward2, Janis Thal1, Lotta Ternieten1

1 ブレメン大学, 2 南カリフォルニア大学
1University of Bremen, 2The University of the Southern California

海洋プレート最上部は、岩石－水の通過道として、海洋プレートおよび海水組成の変化に大きな影響を与えているにもかかわらず、理解が進んでいない。さらにこれに加えて、微生物活動は、この海洋底の水循環にどのように関与しているのか？
本発表では、これらのことに関して、North Pond で進めている研究成果をもとに話題を提供する。

キーワード: 地球化学と岩石学, 地殻の形成, 海洋底水門学, 微生物
Keywords: Geochemistry-Petrology, Crustal accretion, Hydrology, Microbiology.
The Pacific plate subducting along the Japan Trench is very old, over 130 m.y., and thus supposed to be cold. Heat flow values measured on the seaward slope of the Japan Trench along a parallel of 38°45′N were, however, significantly higher than that expected from the seafloor age (Yamano et al., 2008). It indicates that the temperature structure of the incoming Pacific plate may be anomalous, which has an influence on the temperature distribution along the subduction plate interface. Aiming to investigate the extent and cause of the high heat flow anomaly, we conducted heat flow measurements along three E-W lines across the Japan Trench at latitudes of about 38 to 40°N. We obtained 136 new heat flow data mainly on the trench seaward slope and outer rise.

Combined with the existing data, our new results revealed the following features of heat flow distribution on the seaward side of the Japan Trench.

1) Heat flow distributions along the three lines are similar to each other. Heat flow is variable and anomalously high, higher than 70 mW/m², at many stations, while values normal for the seafloor age (about 50 mW/m²) are observed at some stations. No anomalously low values were obtained. It suggests high heat flow anomaly seaward of the trench is not a local phenomenon but extends at least over the northern half of the trench.

2) Significantly high heat flow (over 70 mW/m²) was observed within 150 km of the trench axis, though we need more data to examine if there is a distinct boundary. The limited extent indicates that the anomaly is closely related to deformation of the Pacific plate associated with subduction.

3) Closely-spaced measurements on the trench outer rise at around 40°15′N and 145°40′E revealed that rather uniform high heat flow spreads over 2 km in the N-S direction, parallel to the trench. In the E-N direction, a steep variation (50% decrease in 2 km) was observed in the same area.

These results confirmed the existence of thermal anomaly in the uppermost part of the subducting Pacific plate and provide important information on the temperature distribution along the plate interface, including the rupture area of the 2011 Tohoku-Oki earthquake. High average heat flow within 150 km of the trench axis probably results from pore fluid circulation in the upper part of the oceanic crust, which has been highly fractured by deformation of the Pacific plate. Plausible heat transfer mechanism by pore fluid circulation is discussed in another paper in this session (Kawada et al.). Magma intrusion due to petit-spot volcanism in the last several million years cannot be a major source of the observed extensive heat flow anomaly because petit-spot volcanoes are rather sparsely distributed and the amount of melt produced in the mantle is also thought to be small. Local, kilometer-scale variations in the observed heat flow may be attributed to localized fluid flow along faults or high permeability zones developed in the surface part of the Pacific plate.

Keywords: heat flow, Japan Trench, Pacific plate, thermal structure, subduction zone, pore fluid circulation
Structural evolution of the incoming oceanic plate and its along-trench variation

Structural evolution of the incoming oceanic plate and its along-trench variation

Gou Fujie1*, Shuichi Kodaira1, Yuka Kaiho1, Takeshi Sato1, Tsutomu Takahashi1, Yojiro Yamamoto1

1IFREE/JAMSTEC
1IFREE/JAMSTEC

The dehydration process and the expelled water from the subducting oceanic plate are expected to affect various subduction zone processes, including the arc volcanism, generation of the intermediate-depth earthquakes and the seismic coupling of plate interface. To better understand these subduction zone dynamics, it is essential to clarify the amount of water that is being subducted within the incoming oceanic plate into the subduction zone.

Recent seismic and thermal structure studies have suggested that most water percolation and oceanic plate hydration are associated with the plate bending-related faulting in the trench-outer rise region. To confirm the structural evolution and its along-trench variation prior to subduction in the northwestern Pacific margin, where extremely old (more than 120Ma) oceanic plate is subducting, we have conducted extensive wide-angle seismic reflection and refraction surveys since 2009. Obtained seismic data of vertical and horizontal components were of good quality and we successfully revealed the progressive changes in Vp, Vs, and Vp/Vs ratio within the incoming plate just before subduction. These seismic velocity models indicate the water content within the incoming oceanic plate increases toward the trench accompanied with the development of the bending-related fractures at the top of the oceanic crust, suggesting the seawater percolation into the incoming plate near the trench.

In addition, we observed a remarkable along-trench structural variation within the incoming Pacific plate in the northern Japan trench region. In this region, it has been suggested that the along-trench variation in the distribution of large interplate earthquakes are well correlated with the along-trench variation in the outer trench seafloor roughness (the degree of horst and graben development). As expected, our seismic velocity models within the incoming plate clearly show that seismic velocities are low and Vp/Vs ratio is high in the region where the seafloor bathymetry is rough, suggesting that water percolation and/or hydration within the incoming oceanic plate is high in the region where the seafloor is rough.

In this presentation, we will show the regional variation of the seismic structure within the incoming plate, and discuss its origin and the impact on the subduction zone dynamics.

Keywords: outer rise, structural evolution, along-trench structural variation, wide-angle seismic survey, water contents, hydration
Anisotropy preservation/alteration in young subducted oceanic mantle

Teh-Ru Alex Song

1 IFREE, JAMSTEC

Knowledge of the rate of plate-spreading at mid ocean ridges is critical for estimating plate motions and the outward flux of heat from the interior of the Earth. Strong seismic anisotropy in the oceanic plates can be demonstrated by observations of azimuthal variations in refracted Pn velocity, Rayleigh wave phase velocity and splitting of teleseismic core phases such as SKS waves. In particular, Pn azimuthal anisotropy up to several per cent in the topmost oceanic mantle is strongly linked to a mantle ophiolite section containing anisotropic dunite and harzburgite. However, it is not clear if the seismic anisotropy is radially homogeneous within the oceanic plate or there are intrinsic layering that are relevant to the formation of oceanic lithosphere. In addition, if such a strong anisotropy can be preserved through subduction and if a relationship between spreading rates and Pn azimuthal anisotropy can be established, it is possible to access paleo spreading rates. Here I will attempt to highlight recent progress on localized seismic anisotropy in the uppermost mantle of subducted plates in several young subduction zones and discuss potential implications on the evolution of oceanic lithosphere.

Keywords: anisotropy, subduction
Sea floor basalts of the Japan Sea back-arc basin revisited: Upwelling and melting of hydrous mantle and slab sediment d

Jun-Ichi Kimura, Yuka Hirahara, Toshiro Takahashi, Takashi Miyazaki, Ryoko Senda, Qing Chang

IFREE/JAMSTEC

Middle Miocene seafloor basalts recovered by ODP drilling from the Japan Sea floor (Cousens & Allan, 1992), were re-examined. Sr-Nd-Hf-Pb isotopic and incompatible trace element compositions reconfirmed two basalt types from enriched (E) and depleted (D) mantle sources. D-type basalt is unradiogenic in Sr and Pb, radiogenic in Nd and Hf, and has lower incompatible element abundances than in N-MORB. LREEs are strongly and HREEs are slightly depleted than in MREEs with positive spikes in Ba, Pb, and Sr. E-type basalt is radiogenic in Sr and Pb, unradiogenic in Nd-Hf, with LREE enriched and Nb-Ta depleted trace element compositions. E-type basalt has similar trace element compositions with those in the rear-arc Quaternary basalts in the adjacent NE-Japan arc overall; however, differ greatly in elevated Zr-Hf and in isotopic enrichment.

Forward model adiabatic melting calculations of hydrous metasomatized mantle were examined with varying parameters of (1) mantle potential temperature (Tp/C), (2) initial H2O content (H2O(i)/wt%), melting termination depth (Dmt/GPa), and terrigeneous sediment flux fraction (Fsed/wt%) mixed with the source peridotite. The calculation results suggest that conditions Fsed = 1.2 wt%, with H2O(i) = 0.01-0.12 wt%, Tp = 1200-1290 (C), final melting degree of F = 0.07 at depth of Dmt = 0.8-1.4 GPa explain the trace element abundances in E-type basalt. In contrast, D-type basalt can form at the conditions of Fsed = 0.0 wt%, H2O(i) = 0.00-0.08 wt%, Tp = 1340-1410 (C), F = 0.12-0.15 at depth of Dmt = 1.4-1.7 GPa. The melting conditions for D-type basalt are deeper and hotter than for primary N-MORB (H2O(i) = 0.01-0.10 wt%, Tp = 1230-1330 (C), Dmt = 0.7-1.4 GPa, F = 0.10-0.12) calculated by the same method consistent with the depleted nature in total REEs and HREEs with higher MgO in D-type basalt. E-type basalt differs source and can form at shallower depth and lower Tp and F suggesting heterogeneous source mantle in terms of the chemistry and melting regime.

Mixing calculations using Nd-Hf-Pb isotopes between the depleted mantle and terrigeneous sediment suggest that the bulk sediment addition rather than sediment melt/fluid accounts for the source enrichment in E-type basalt. However, depletions in Rb, U, and K should have occurred perhaps by subduction modification before the bulk sediment is involved in the adiabatic melting regime beneath the back-arc basin. D-type basalt is from depleted mantle in DM-EM1 transition similar to those in the deep rear-arc OIBs in N-China. If elevated Ba, Pb, and Sr in D-type basalt is the inherent from the source mantle similar to those in the Japan Sea, they could be from ancient slab fluids stored in the mantle transition zone (e.g., Kuritani et al., 2011). The back-arc basin basalt in the Japan Sea would thus have formed by melting of both deep-sheeted hydrous mantle and subduction-modified slab sediment during ascent of the back-arc mantle while opening of the Japan Sea.

Keywords: Japan Sea, basalt, adiabatic melting, back-arc mantle
Os Isotopic Signature of Backarc Abyssal Peridotites from the Godzilla Megamullion

Wendy Nelson1*, Jonathan Snow1, Alan D. Brandon1, Yasuhiro Ohara2
Wendy Nelson1*, Jonathan Snow1, Alan D. Brandon1, Yasuhiro Ohara2

1Department of Earth & Atmospheric Sciences, University of Houston, Houston, USA, 2Hydrographic and Oceanographic Department of Japan, Tokyo, Japan

Backarc seafloor spreading is a unique form of extension intimately tied to subduction zone dynamics. Unlike volcanism at mid-ocean ridges, backarc volcanism evolves from arc-like to MORB-like compositions over the short lifespan (~15 Ma) of the backarc. Our understanding of the evolution of oceanic mantle during backarc extension is limited to exposures of abyssal peridotite and ophiolites. While some ophiolites are thought to have formed in a backarc environment, few direct comparisons of ophiolite and backarc peridotite have been made due to the small number of documented exposures and limited in situ samples from backarc settings. As a consequence, isotopic investigations have thus far been limited to ophiolite and mid-ocean ridge settings, limiting our understanding of the backarc oceanic mantle.

Here we report Re-Os isotopic data for backarc abyssal peridotites from the Godzilla Megamullion, a massive ~9000 km² oceanic core complex located in the Parece Vela Basin (Philippine Sea). In this region, Izu-Bonin-Mariana subduction zone is responsible for creating the Parece Vela and Shikoku backarc basins as well as the Mariana Trough. In the last decade, five expeditions have collectively sampled the length of the Godzilla Megamullion. The distal end records early, magmatically productive extension marked by moderately depleted spinel peridotites. This transitions into a less melt-productive medial region characterized by more fertile peridotite. The proximal region represents the most recently exhumed portion of the megamullion and was the focus of the latest (October 2011) mapping and sampling expedition. Ultramafic samples from the proximal region are dominantly spinel lherzolite +/- plagioclase. Whole rock $^{187}\text{Os}/^{188}\text{Os}$ (0.1208-0.1301) ranges from mildly subchondritic to primitive mantle values, consistent with abyssal peridotites from mid-ocean ridge settings. Samples from distal, medial, and proximal regions are isotopically indistinguishable. Spinel grains in proximal samples record high TiO$_2$ and Cr# produced by melt stagnating and interacting with the mantle. Re concentrations are positively correlated with TiO$_2$ abundances in spinel, suggesting that Re is also influenced by melt-rock interaction. However, $^{187}\text{Os}/^{188}\text{Os}$ ratios are not correlated with Re concentration, demonstrating that modest Re addition occurred recently. A few samples record mildly radiogenic values (0.1321-0.1414), the most radiogenic of which has experienced approximately 5 wt. % MgO loss. Therefore, the radiogenic $^{187}\text{Os}/^{188}\text{Os}$ signature may be the result of seafloor weathering. As a whole, the $^{187}\text{Os}/^{188}\text{Os}$ data suggest that the backarc oceanic mantle in this region did not experience significant ancient melt depletion, and radiogenic $^{187}\text{Os}/^{188}\text{Os}$ ratios were likely generated during secondary processes.

Keywords: oceanic core complex, abyssal peridotite, osmium, Godzilla Megamullion
ポニライト質岩脈群とその深成岩相からみる初期島弧形成プロセス：オマーンオフィオライト北部地域を例として
Incipient island arc magmatism: pterogeneisis of boninitic dike swarms and related cumulates in the Oman ophiolite

山崎 秀策 1*
Shusaku Yamazaki 1*

1 新潟大学大学院自然科学研究科
1Graduate School of Science and Technology, Niigata University

オマーンオフィオライトの北部 Fizh 岩体北西部地域では、MORB 質の斑岩下部地殻に、MORB よりも不適合元素濃度に枯渇した含水マグマを起源とする超塩基性集積岩類（ダナイト-単斜輝岩）・ガプロノーライト類（かんらん石斑い岩-含 Fe/Ti 酸化物ガプロノーライト・斜長花崗岩類）から構成される複合深成岩岩体が後期貫入し、地殻部の厚さを 8-9 km へと厚化させた。そこに最後期の貫入岩として、地殻下部から上部にかけて数百のポニライト質岩脈が平行貫入し、2-5km 幅を持つ 4 帯の岩脈群を形成している。オフィオライト北部の溶岩層には、MORB (V1 or Geotimes unit) と IAT (V2 or Lasail & Alley unit) への火成活動の変遷が認められ、Alley unit 中にポニライト溶岩が伴われることから（Ishikawa et al., 2002），岩脈群は Alvey 溶岩層の供給岩脈群の一部であったと考えられる。

ポニライト質岩脈は両輝石・かんらん石斑晶に富む多斑晶質のものが多く、全岩化学組成によりコマチアイト、高 Ca ポニライト、高 Mg 玄武岩・安山岩に分類される。この幅広い組成傾向は、下部地殻内における MgO 12-14wt%の初生的な高 Ca ポニライトメルトからの斑晶の沈積・分別に由来すると考えられる。また、单斜輝石斑晶の累積構造解析からは、その形成プロセスに分化程度および微量元素組成の特徴（LREE/MREE など）が異なるポニライト質マグマの混合が存在したことを示唆している。

一方、岩脈群の根付近に存在する後期貫入超塩基性岩類の一部から、不適合元素濃度がより強度に枯渇したポニライト的なクロムスピネル (Cr# > 70) を伴う単斜輝岩ダナイトが見つかった。岩脈中の単斜輝石斑晶と、枯渇的な超塩基性岩類中の単斜輝石は、Y, REE など不適合微量元素濃度、REE パターンが通称の特徴を示すことから、これらは初生的なポニライトマグマを起源とする超塩基性集積岩であると結論づけることができる。また、推定された初生的なメルト組成は、M’HREE に対して Th および LREE に富む特徴的な微量元素パターンを示す。これは、ポニライト質岩脈群の起源となる枯渇マントとに、沈み込むスラブから供給された堆積岩メルトが付加した痕跡として解釈される。

本調査地域の火成史は、海洋地殻段層の形成後、含水枯渇マグマによる後期貫入深成岩質の貫入による地殻の厚化を経て、ポニライトマグマの貫入が生じたと解釈される。この火成活動の変遷は、伊豆マリアナ前弧域に代表される海洋性島弧の発生過程、特に海洋底内での沈み込み帯形成直後からポニライト火成活動以前の短い期間に相当する初期期の地殻発達プロセスとして解釈される（Ishizuka et al., 2011）。従って、オマーンオフィオライト北部 Fizh 岩体北西部地域は、沈み込み帯の形成直後に 10km 厚へと急激に厚化した海洋性島弧地殻断面の好例であると考える。

参考文献

キーワード: オフィオライト、初期島弧火成活動、ポニライト、岩脈群、地球化学、火成岩岩石学
Keywords: ophiolite, boninite, island arc magmatism, dike swarm, geochemistry, petrology
This paper was published in Lithosphere, 4, 497-510, 2012.

New trace-element, radiogenic isotopic, and geochronologic data from the Troodos ophiolite, considered in concert with the large body of previously published data, give new insight into the tectonic history of this storied ophiolite, as well as demonstrating the variability of suprasubduction-zone ophiolites, and differences between them and commonly used modern analogs. Similar to earlier studies, we find that island-arc tholeiite of the lower pillow lava sequence erupted first, followed by boninite. We further divide boninitic rocks into boninite making up the upper pillow lava sequence, and depleted boninites that we consider late infill lavas. We obtained an Ar-Ar age from arc tholeiite of 90.6 ± 1.2 Ma, comparable to U-Pb ages from ophiolite plagiogranites. New biostratigraphic data indicate that most of the basal pelagic sedimentary rocks that conformably overlie the boninitic rocks are ca. 75 Ma. This suggests that voluminous eruption of boninitic rocks persisted until ca. 75 Ma. Limited eruption of boninitic lavas may have continued until 55.5 ± 0.9 Ma, based on the Ar-Ar age we obtained. The duration of arc magmatism at Troodos (at least 16 m.y., with some activity perhaps extending 35 m.y.) without the development of a mature arc edifice greatly exceeds that of other well-studied suprasubduction-zone ophiolites. We propose that Troodos was formed over a newly formed subduction zone, similar to many proposed models, but that the extended period of magmatism (boninitic) resulted from a prolonged period of ridge subduction.
オマーンオフィオライトマントルセクションからみた沈み込み帯のマントルウェッジにおける酸化還元状態
Redox state of mantle wedge above subduction zone as inferred from the Oman mantle section

高澤 栄一1*, 菅家奈未2
Eiichi TAKAZAWA1*, Nami KANKE2

1新潟大学理学部地質科学科, 2新潟大学大学院自然科学研究科

本研究は、オマーンオフィオライトのマントルセクションから、マントルウェッジの酸化還元状態を知ることを試みた。オマーンオフィオライト北西部のフィズマントルセクションは、モホ面から深度約14 kmまでが地表に露出している。同岩体からこれまでに採取したかんらん岩を用いて、Balhause et al. (1991) が考えたように、カンラン石とスピネルの鉱物組成から酸素フグシティーを推定的に計算した。そして、Log fO2 の FMQ パッファーからの偏差をフィズ岩体マントルセクションにプロットしたところ、オフィオライト基底部はモホ面付近より酸素フグシティーがかななり低く、すなわちより還元的なことが明らかになった。とくに、基底スラブ付近では、log fO2 が FMQ -3 に達するところもある。従来、鳥弧玄武岩やマントル捕獲岩は MORB や深海底かんらん岩よりも酸素フグシティーが高く、鳥弧のマントルは海塩より酸化的とされている。今回の結果は、沈み込むスラブと接するマントルウェッジ基底部は従来の通説とは逆に、より還元的である可能性を示唆している。

オマーンオフィオライトのマントルセクションは海洋プレート内衝突運動で沈み込み帯の初期の過程を経ており、その際に、下位のメタモルフィックソールから H2O を主体とする流体がマントルセクションに流入し、フラックス溶融を起こしたことが知られている (Arai et al., 2006; 高澤, 2012)。このことはスピネルの Cr#の高い高興機かんらん岩が多く存在することから支持される。すなわち、オマーンオフィオライトでは形成まもないマントルウェッジ（オフィオライト）と沈み込むスラブの上部（メタモルフィックソール）が直接接していることになる。従来、鳥弧のマントルは酸化的であるとされており、今回オマーンのスピネルの発生データが示し、沈み込み帯のスラブ上部のマントルウェッジが還元的であると示唆される。これらは、オフィオライトのスラブ上部のマントルウェッジが還元的であることを示す。これにより、オマーンオフィオライトのスラブ上部のマントルウェッジが還元的であることが示唆される。これにより、オマーンオフィオライトのスラブ上部のマントルウェッジが還元的であることがあることが示唆される。これにより、オマーンオフィオライトのスラブ上部のマントルウェッジが還元的であることが示唆される。これにより、オマーンオフィオライトのスラブ上部のマントルウェッジが還元的であることが示唆される。

キーワード: オマーンオフィオライト, かんらん岩, 酸素フグシティー, マントルウェッジ, 沈み込み帯, 酸化還元状態
Keywords: Oman ophiolite, peridotite, oxygen fugacity, mantle wedge, subduction zone, redox state