The medium-term improvement plan of the JMA EEW system

Masaki Nakamura1*, YAMADA, Yasuyuki1, HIRANO, Kazuyuki1, KIKUTA, Haruyuki1

1JMA

The JMA earthquake early warning (EEW) system is a part of the EPOS system, which operates 24 hours a day. So, the improvement must be limited. In other words, the update of the EPOS system will be a good chance to improve the EEW system. We will make a presentation about the medium-term improvement plan of the JMA EEW system.

The main part of the JMA EEW system uses the analysis results at the individual stations. We are making the system more efficient by adding and upgrading the elements of the analysis. For example, we will add the continuous transmission mode to the conventional trigger transmission mode. Using the new mode, we will always be able to grasp the seismic motion field all over Japan. Furthermore, we will introduce the real-time pseudo seismic intensity by Kunugi et al. (2008), by which we will be able to monitor the extent of the strong motion field and to evaluate the calculated hypocenter parameter.

The JMA EEW system has to separate the picking data into the individual events correctly. Then, we only use the phase time data so far, but plan also to use the amplitude data. Moreover, the JMA EEW system also uses the calculated hypocenter parameters by the other methods, including the conventional STA/LTA trigger and AR-AIC method, and we plan also to use the calculated results by the particle filter method (Tamaribuchi, the abstracts of this meeting, 2013).

The JMA EEW system is based on the calculated hypocenter parameter but in the cases of the 2011 off the Pacific coast of Tohoku Earthquake and the aftershocks, the system did not necessarily work well because of the procedure. To overcome the situation, we have the idea of the hybrid method using the conventional method and the real-time pseudo seismic intensities.

As mentioned above, the main part of the JMA EEW system uses the analysis results at the individual stations. Now we use 220 stations over Japan including 5 OBS stations in Tonankai. We have already installed 50 new stations and will use those data after the preliminary surveys. Moreover, we are making the external system which will use the 30 NIED KiK-net stations in the deep boreholes under the southern Kanto area and the 20 JAMSTEC Donet OBS stations off the Kii Peninsula. We will also use those data. Furthermore, we have a plan also to use the real-time pseudo seismic intensities of 400 JMA seismic intensity meters after the next EPOS system.

Keywords: EEW, JMA, seismic intensity, hypocenter determination
A real-time calculation of seismic intensity and its applications

Takashi Kunugi1*, Shin Aoi1, Hiromitsu Nakamura1, Wataru Suzuki1, Nobuyuki Morikawa1, Hiroyuki Fujiwara1

1NIED

With the increasing requirements of earthquake early warning (EEW) system, it is much more obviously that the JMA seismic intensity (Ijma) defined by Japan Meteorological Agency has a real-time delay since the Ijma needs a filtering operation in frequency domain. In order to improve a real-time calculation suitable for the EEW system, National Research Institute for Earth Science and Disaster Prevention (NIED) have proposed a real-time processing method of seismic intensity (Kunugi et. al, 2008), using approximating filters in time domain instead of the original filter in frequency domain. We have also improved upon the accuracy of the approximating filters used for real-time processing of seismic intensity (Kunugi et. al, 2013). The relation between the Ijma and the real-time intensity calculated using the improved approximating filter is examined by using a large number of strong motion records. The results show that the absolute differences between the Ijma and the real-time seismic intensities of 99% of all records are within 0.1.

In this presentation, we introduce the real-time processing method of seismic intensity proposed by NIED. Also its applications for EEW systems are discussed.

Keywords: seismic intensity, real-time processing, earthquake early warning, kyoshin monitor, strong ground motion
Real-time prediction of earthquake ground motion: application of data assimilation technique for estimation of wavefield

Mitsuyuki Hoshiba

1Meteorological Research Institute

Aiming at improvement of prediction of seismic intensity in Earthquake Early Warning, we are investigating a new technique for real-time prediction of earthquake ground motion. In this presentation, I will explain the application of data assimilation technique for estimation of current wavefield of ground motion.

In the present EEW of JMA, at first hypocentral location and magnitude, M, are quickly estimated, and then seismic intensity is predicted from the hypocentral location and M. In this method, it is not easy to take into account the effect of extension of source region, and the error of hypocentral and M determination leads directly to the error of the prediction. When multiple earthquakes occurred simultaneously as in the case of aftershocks of the Tohoku Earthquake (M9.0), it is not easy to determine the hypocentral location correctly. For addressing these problems, new method for real-time prediction of ground motion is proposed, in which ground motion is predicted directly from the estimated current wavefield, skipping the process of hypocentral location and M. The boundary integral equation method (Kirchhoff integral) is applied. In the presentation, I will explain the application of data assimilation technique for estimation of current wavefield of ground motion.

Determination of detailed distribution of current wave motion is a key for the method, so that dense seismic observation network is required. Data assimilation is a technique to produce artificially denser network, which is widely used for numerical weather prediction and oceanography. Distribution of current wave motion is estimated from not only the current real observation of u(x, t), but also the prediction of one step before, P(u(x, t-delta t)). Combination of them produces denser artificial network than the real one. Simulations of the case of large source extent, and the case where multiple earthquakes occurred simultaneously are performed to check the availability of the data assimilation technique.

Combination of the data assimilation technique with the boundary integral equation method and real-time correction method of site amplification factors enables us to predict earthquake ground motion more precisely.

Keywords: Earthquake Early Warning, Real-time prediction of ground motion, data assimilation
Real-time correction of site amplification factors estimated by the coda normalization method

Shigeki Aoki¹, Mitsuyuki Hoshiba¹

¹ Meteorological Research Institute

1. Introduction

Hoshiba (2011, SSJ) proposed a method for expectation of ground motion based on real-time monitoring, in which hypocenter and M are not required. In this method, site amplification factor must be corrected in real-time manner. Iwakiri & Hoshiba (2011, JpGU) concluded that the preciseness will be improved when frequency dependency is introduced into the site amplification correction in comparison with the correction of the scalar values such as average difference between observed and expected seismic intensities. Hoshiba (2012, SSJ) designed a recursive digital filter having similar amplitude property to site amplification factor, and proposed a method for real-time site correction. In this study, we will design the recursive filters for the JMA seismic intensity stations, of which site amplification factors were systematically estimated by the coda normalization method, and test a real-time site correction.

2. Site amplification factor

Aoki & Hoshiba (2012, JAEE) estimated relative site amplification factors of the JMA seismic intensity stations for 11 frequency bands (f=0.75-15.0Hz) by the method of Takemoto et al. (2012, BSSA). In this method, we used average amplitudes (over a time window with 5 s length) of the vector sum of the 3-component band-pass filtered coda waves as a data set. The parameters of source and path effects and those of relative site effects were simultaneously estimated by the least-squares method. 15 sequential time windows were set sliding by 2.5 s after 60 s from the origin time. Only the amplitudes with high S/N (more than 2), of which the lapse time exceeded twice the S-wave arrival time, were used in this analysis. We selected 370 shallow and intermediate depth (H < 90km) earthquakes that occurred in the area around Japan from 1996 to 2010 with 4.0 < M < 7.4 and made use of the amplitude data at the epicentral distance less than 200km. Consequently, we estimated the relative amplification factors for more than 540 sites.

Our results show that the amplification factors in low frequency bands (0.75-2Hz) are in good agreement with the thickness of sedimentary basins, and the regional contrasts tend to weaken in the high frequency bands. There were positive correlations among our results, the values of the station correction estimated from topographic data and those from observed seismic intensities except for the higher frequency bands than 10Hz.

3. Feasibility study of site correction

The filters for site correction [Hoshiba, 2012] are composed by the combination of some 1st order and 2nd order analogue filters, and the parameters of the filters are evaluated by the non-linear least-squares method to fit amplitude property to frequency-dependent site amplification factors. The digital recursive filters are designed by applying the bilinear transform and pre-warping to the analogue filters. While the filter described here is what is called 'convolution filter', which adds characteristic of the site effect to simulate the ground motions on the surface based on the seismograms observed in the ground, the deconvolution filter could be expressed by the reciprocal of the analogue filter. When we evaluate the filter parameters in this study, the site amplification factors in the frequency bands over 15Hz and under 0.75Hz are assumed to equal to those of both ends.

In this test, firstly, a deconvolution filter of each station is applied to each seismogram of an earthquake. Secondly, a common convolution filter is applied to all seismograms due to adding the common site effect. In order to confirm the effect of this correction, we compared the distributions of the seismic intensities before and after the correction. While there were some outliers before the correction, the number of the outliers tended to become small after the correction. These results show the amplification factors estimated in this study are useful for the site correction.

Keywords: Site amplification factor, Coda normalization method, Real-time processing, JMA seismic intensity station, Prediction of ground motion
Construction of real-time earthquake damage-estimation system J-RISQ

Shin Aoi\(^1\), Hiromitsu Nakamura\(^1\), Takashi Kunugi\(^1\), Wataru Suzuki\(^1\), Hiroyuki Fujiwara\(^1\)

\(^1\)National Research Institute for Earth Science and Disaster Prevention

From the viewpoint of a decision making of the first action to an earthquake, not only the hazard (ground motion) information but also the risk (damage) information evaluated in real-time are important. To meet this need, we developed real-time estimation system (J-RISQ) for exposed population and earthquake damage of buildings. We constructed the system by combining the database developed for J-SHIS and the real-time observation data obtained by strong motion seismograph networks such as K-NET and KiK-net. Database of J-SHIS consists of the site amplification factor, population distribution and the building information (age and structure type) as well as the fragility curves.

To avoid an estimation error of the source location and magnitude, we use only observed seismic intensities as an input of the system. When an earthquake occurs, seismic intensities are calculated in each observation station and sent to the DMC (Data Management Center) in different timing. For rapid estimation, the system does not wait for the data from all the stations but begins the first calculation when the number of the stations observing the seismic intensity of 2.5 or larger exceeds the threshold amount. Estimations are updated several times using all the available data at the moment. Spatial distribution of seismic intensity in 250 m meshes is estimated by the site amplification factor and the observed data. By using this intensity distribution, the exposed population and the numbers of damaged buildings are estimated using population data and the building information, respectively. The results are visualized by WebGIS and can be grasped using an internet browser.

This system is experimentally operated since 2010 and has performed the estimations in real-time for more than 600 earthquakes by the end of 2012. For about 75% of these earthquakes, it takes less than one minute to send the e-mail of first estimation after receiving data from the first station, and therefore, the rapidity of the system is satisfactory. Though the accuracy of the estimations of exposed population is relatively high, the accuracy of the damage estimations using the fragility curves has some uncertainty. It is important to investigate the effective way to provide and utilize such information, which is potentially useful for mitigating the seismic disasters of ongoing earthquakes in spite of the relatively large uncertainty.

Keywords: earthquake damage-estimation system, real-time earthquake information, earthquake early warning, J-RISQ, K-NET, KiK-net
Development of new GEONET real-time processing system

Satoshi Kawamoto1,*, MIYAGAWA, Kohei1, YAMAGUCHI, Kazunori1, Takuya NISHIMURA1, Basara Miyahara1, Tomoaki Furuya1, Kazuki Sakai1, HATANAKA, Yuki1, NEMOTO, Satoru1, TSUJI, Hiromichi1, Yusaku Ohta2, Ryota Hino2, Motoyuki Kido2, Takeshi Iinuma2, Hiromi Fujimoto2, Satoshi Miura3

1Geospatial Information Authority of Japan, 2Graduate School of Science, Tohoku University, 3Earthquake Research Institute, The University of Tokyo

GNSS Earth Observation Network System (GEONET) consists of more than 1,200 continuous GNSS stations operated by Geospatial Information Authority of Japan. The GNSS data are transmitted to GEONET central analysis center in real-time. Advantage of GNSS real-time positioning is better performance in estimating moment magnitude of large earthquake than short-period seismometers. Blewitt and others (2006) demonstrated accurate moment magnitude could be determined within 15 minutes after the 2004 Sumatra earthquake by GPS real-time positioning and contribute to tsunami early warning. It has been suggested that GEONET should be exploited for early warning system especially after the 2011 off the Pacific coast of Tohoku Earthquake by a committee on disaster prevention.

The previous GEONET real-time processing system launched in 2002. However, it has not enough performance to monitor crustal deformations efficiently because of the limited size of analysis network, e.g. number of stations and baseline length should be shorter than 100 km. It was also the problem that the previous system could not detect permanent displacement automatically. The real-time displacements thus were not used instantaneously. Now GSI and Tohoku University are underway to develop new GEONET real-time analysis system to improve the problems described above since 2011.

The goal of the new system is to estimate permanent displacement field and moment magnitude of giant earthquakes and notify that information near real-time. The analysis strategy of the new system is completely different from the previous system. The prototype of the new system implements RTKLIB 2.4.1 (Takasu, 2011) for real-time GNSS positioning. The timing of the extraction of permanent displacements occur are determined automatically by ‘RAPiD’ (Ohta et al. 2012) or ‘EEW’ (Kamigaichi et al., 2009) provided by Japan Meteorological Agency. Fault source model inversions are carried out just after the detection of permanent displacements. The automatically derived displacements using RAPiD are cross-checked by comparing the displacements at adjacent stations, which was proved to be effective to reduce false detection of permanent displacements (Kobayashi et al. 2012). The estimated magnitudes are e-mailed to officials of GSI. The prototype has been operated monitoring 143 stations since April 6, 2012.

We present overview of the prototype including some issues to be improved and future plan of the new system to monitor all GEONET stations.

Keywords: GEONET, RTK-GPS, real-time
A method of real-time prediction of main ground motions using vertical motions for the Earthquake Early Warning System

Susumu Kurahashi1, Kojiro Irikura1

1Aichi Institute of Technology

The Earthquake Early Warning system (EEW system) by JMA was successfully operated during the 2011 off the Pacific Coast or Tohoku Earthquake (the Tohoku Earthquake, Mw9.0). The estimated seismic intensity by the EEW system was in good agreement with the observed ones near the hypocenter of the mainshock (for example Miyagi and Fukushima Prefecture). However, in the Kanto region far away from the hypocenter, the estimated seismic intensity was clearly underestimated in comparison with the observed one. It is caused to the fact that the attenuation-distance relationships of PGV and PGA for such great earthquake are well expressed as a function of not epicentral distance but the shortest distance from site to source fault.

So far, we have found that the attenuation-distance relationships of both horizontal and vertical PGAs tend to have a certain level of saturation near the source faults during large inland earthquakes. Based on the above results, we proposed a method of providing the information about the rupture extension before the arrival of the main motions from large earthquakes to calculate seismic intensity in wide areas using this information (Kurahashi et al, 2010). The seismic intensity in further regions is calculated using the rupture extension and the attenuation-distance relationships. We found that vertical PGAs at stations near the source fault of the Tohoku earthquake have a certain level of saturation, although the saturation levels are changeable due to site effects.

Hoshiba (2012) proposed that the method of the ground motions prediction method using real time monitoring. This method can predict the S wave motions at an optional station using the S wave motions at a near station by a method based on Kirchhoff Fresnel integral method. Irikura and Kurahashi (2013) proposed the method of calculating S wave motions from P wave motions based on Hoshiba (2012). In order to calculate the S wave motions accurately using the above-mentioned P wave motions, we need to estimate frequency-dependent site effects. In order to calculate the site effect correction by real time, it is necessary to estimate the site effects by IIR filter.

In this study, we propose a method of calculating instantaneously the seismic intensity and the S wave motions using the vertical motions.

The IIR filter as a method to the site effect is estimated using the Hoshiba (2012) method. The procedure is as follows,

1) The frequency-dependent site effect is obtained by removing the source spectra and propagation-path effect from the observed records. The source spectra are obtained by the omega-squared model with seismic moment and corner frequency. Therefore, the site effect means amplification of ground motions between bedrock and Earth surface.

2) The frequency parameter of the IIR filter is decided considering the site effect as a target.

Keywords: real-time information, vertical acceleration, predicted S wave motions
Installation azimuth of Tonankai OBS estimated from air-gun data, and application to the single-station method of EEW

Naoki Hayashimoto¹*, Mitsuyuki Hoshiba¹

¹Meteorological Research Institute

1. Introduction

Ocean Bottom Seismograph (OBS) is promising tool for early detection of an earthquake in ocean areas, and thus it is also useful for quickening Earthquake Early Warning (EEW). However, the uncertainty of the installation azimuth of OBS may obstruct the back-azimuth estimation in the single-station method of EEW. Since the Principal Component Analysis (PCA) of the single-station method estimates the back-azimuths by using the principal axis of the first motion of P wave, we need to know accurate azimuth information of seismograph. But, OBS is not able to align installation direction with the true bearing correctly. The installation azimuth of horizontal components of Tonankai OBSs has been measured only by using Remotely Operated Vehicle (ROV). Nakano et al. (2012) estimated orientation of DONET seismometers by using seismic waveforms, and showed the difference between the presumed direction and the measurement of the ROV was about 50 degree at some stations. Hayashimoto and Hoshiba (2012) applied the single-station method to Tonankai OBS and DONET, and they mentioned that the uncertainty of the installation azimuth might be included in the results of Tonankai OBSs because the horizontal components were corrected by the measurement of ROV. In this study, we presume the installation azimuth of Tonankai OBSs by using particle motion of air-gun signals. Using the presumption of the orientation of Tonakai OBS, the azimuthal angle is corrected for the single-station method of EEW. We will show the results of improvement of the estimation of the azimuthal angle after the correction.

2. Data and Method

In this approach, we used air-gun signals which recorded at velocity and acceleration seismographs of Tonankai OBSs during the seismic survey KR11-09 and KR12-12. We applied a band-pass filter of 5-20Hz to the waveforms of five seconds from theoretical arrival time of direct water wave which was calculated from the shot-point and the shot-time of air-gun. And we calculated the arrival directions from these particle motions by using the principal component analysis. The results of arrival directions were selected at the amplitude of the seismic wave and the contribution ratio of the first principal component, and they were used for the installation azimuth presumption of Tonankai OBSs. We also applied same approach to DONET to show the validity of the technique.

3. Results

In Tonankai OBSs, the difference from the measurement of ROV is about 50 degrees at one seismograph, and at others the differences are about a dozen degrees. These results indicate that the estimation of installation azimuth using waveform is essential in OBSs. In addition, our results at DONET are in good agreement with the previous results of Nakano et al. (2012).

4. Application of azimuthal correction to the PCA of EEW

We applied the PCA of the single-station method of EEW to Tonankai OBSs by using the installation azimuth which we estimated above. Estimated epicenter directions are well improved, but errors of OBSs are still slightly larger than those of land stations. We consider one of the possible causes of these errors is the small incidence angle of P wave which is caused by the influence of the oceanic sedimentary layer.

Keywords: Tonankai OBS, Installation azimuth, Earthquake Early Warning
A basic study for application of ocean-bottom seismographs to the EEW system

Hiroyuki Miyakoshi1*, TSUNO, Seiji1, IWATA, Naoyasu1, YAMAMOTO, Shunroku1, SAKAI, Shin’ichi2, SHINOHARA, Masanao2

1Railway Technical Research Institute, 2Earthquake Research Institute, The University of Tokyo

In the railway field of Japan, to ensure the safety of trains running in a certain area which strong shakings will attack during earthquakes, the earthquake early warning (EEW) system using estimated earthquake information has been installed. To issue the EEW as soon as possible for subduction zone earthquakes, we considered it is important to apply ocean-bottom seismographs (OBSs) to the EEW system and performed a basic investigation for the difference between seismic motions observed on the seafloor and those on the ground.

In this study, we used 213 seismic motion data observed by three OBSs of Ocean Bottom Cable System off Sanriku and 23796 data K-NET/KiK-net for 71 earthquakes.

By investigating the relationships between peak accelerations observed on the seafloor and those on the ground using the differences from estimated values by the attenuation relationships for PGA (Korenaga et al., 2012), we confirmed the values of peak accelerations on the seafloor are about 3 times larger than those on the ground on average. For several earthquakes, we compared Fourier spectrums of S-waves on the seafloor and those on the ground and verified that amplitudes on the seafloor are about 10 times larger than those on the ground in low frequency below 5Hz and, on the other hand, those on the seafloor is significantly lower than those on the ground in high frequency over 5Hz. It seems that the high-frequency components are amplified by the soft sediment on the seafloor.

Those results indicate the characteristics of seismic motions observed on the seafloor are largely different from those on the ground. Therefore, the site amplification the frequency characteristics on the seafloor must be considered for applying OBSs to the EEW system.

Acknowledgement

The authors thank ERI and NIED to provide us strong motion data by Ocean Bottom Cable System off Sanriku and K-NET/KiK-net, respectively.

Keywords: ocean-bottom seismograph (OBS), earthquake early warning (EEW), peak acceleration, off Sanriku
Developments in the Earthquake Early Warning System for Istanbul, NW Turkey

Ali Pinar1*, Mustafa Erdik1, Hakan Alcik1, Can Zulfikar1, Aydin Mert1, Ahmet Korkmaz1

1KOERI, Bogazici University, Turkey

The implementation of the earthquake early warning system (EEWS) in Istanbul commenced in 2001 following the devastating 1999 Izmit (Mw=7.5) and Duzce (Mw=7.2) earthquakes. At present the EEWS network consists of 10 inland and 5 OBS strong motion stations located as close as possible to the Great Marmara Fault zone. At the beginning data transmission was provided with Spread Spectrum Radio Modem; now, a satellite based and fiber optic data transmission system is used for communication between the remote stations and the base station at KOERI. The continuous on-line data from these stations is used to provide real time warning for emerging potentially disastrous earthquakes. A simulation of Early warning times for 280 earthquakes portrays a lead time between 0-30 seconds for Istanbul metropolitan area. The fiber optic lines provide high data transmission speed (2-4 miliseconds) from the remote stations to the KOERI data center, i.e. no latency exists taking into account the 100 sps sampling interval of the data. Redundancy of communication system is essential which we supply using a satellite data transmission system.

Considering the complexity of fault rupture and the short fault distances, a simple and robust Early Warning algorithm, based on the exceedance of specific threshold time domain amplitude levels (band-pass filtered accelerations and the cumulative absolute velocity) named as CAV is implemented. Onsite and regional early warning algorithms based on translation of the early P-wave waveform characteristics to final source parameters of the earthquakes are to be implemented as well.

The early warning signal (consisting three alarm levels) is to be communicated to the appropriate servo shut-down systems of the receipent facilities, which will automatically decide proper action based on the alarm level. Among the prospective end users of the EEW signal are the facilities such as Fast Train and Tube Tunnel, Istanbul Gas Distribution Corporation (IGDAS), Recently constructed tall buildings, electric power plants and so on.

The continuous upgrade of the EEWS network, the software and the hardware is going on. In addition to the present strong motion stations additional ones are to be deployed along the southern coastline of the Marmara sea. The improved station coverage will enable regional warning technique be implemented along with the present on-site warning algorithm.

Keywords: early warning, rapid response, algorithms, fiber optic line, Marmara Sea, Turkey
A social experiment of a new strong-motion monitoring system (Kyoshin Monitor) with earthquake early warning

Hiromitsu Nakamura¹*, Shin Aoi¹, Takashi Kunugi¹, Wataru Suzuki¹, Shohei Naito¹, Hiroki Azuma¹, Hiroyuki Fujiwara¹

1 NIED

In August 2008, NIED started "Kyoshin Monitor" that is a web service providing live maps of earthquake shaking in Japan. After the 2011 Tohoku Earthquake (M9), the number of people accessing the Kyoshin Monitor has soared, and the system has been drawing the attention of both experts and the general public. The JMA’s earthquake early warning system for the 2011 Tohoku earthquake was not able to issue a warning that covered a sufficient spatial extent due to an underestimation of the earthquake magnitude. As a result, methods for detecting massive earthquakes based on the distribution of the observed strong-motion data have been examined as a system independent from the earthquake early warning system.

We consider that the combination of the earthquake early warning system as the latest forecast, and the Kyoshin Monitor as the observation is important in mitigating earthquake damage, thus we have developed a new Kyoshin Monitor that can provide the combined information (hereafter referred to as the "Trial Version Kyoshin Monitor").

In this research, a social experiment of the Trial Version Kyoshin Monitor has been carried out with the general public, and questionnaires were used to collect information on the background and motivation for using the Kyoshin Monitor, opinions on the version used, use status, usability, and other appropriate items, aiming to understand the public’s needs for the delivery, use and utilization of strong-motion observation information in the future.

The social experiment was implemented through a limited online publication of the Trial Version Kyoshin Monitor to experiment participants following user registration. Public participation was invited thrice between September and October in 2012 through a social experiment website (http://www.kmoniexp.bosai.go.jp/), obtaining a total of approximately 4000 participants.

Acknowledgement: We would like to express our gratitude to the participants in this social experiment.

Keywords: kyoshin monitor, earthquake early warning, strong ground motion, social experiment
Automatic Hypocenter Determination using Particle Filter Method

Koji Tamaribuchi1

1JMA

Quick estimation of spatial and temporal hypocenter distributions in aftershocks is essential for taking a measure to mitigate earthquake disaster. The automatic hypocenter determination method is important to grasp seismic activities in real time, especially after the 2011 off the Pacific coast of Tohoku Earthquake. However, it is difficult to determine aftershocks due to a high trigger level and wrong phase pickings.

To solve above problems, Liu, Yamada (2011) proposed a particle filter method for detecting earthquakes that occurred at the same time. This method can estimate the most probable event parameter values (t, lat, lon, dep, mag). They formulated a likelihood function using the amplitude.

In this study, I proposed a new likelihood function using the amplitude and pickings. I defined the likelihood function as follows,

$$lik(x|m,s) = \prod_{i=1}^{N} \left[f(t_{i \text{obs}} | m, s_{i}) \ast g(M_{i \text{obs}} | m, s_{M}) \right]$$

where f is the likelihood function for variance of pickings, g is for variance of magnitudes, m is the particle (t, lat, lon, dep).

In addition, I considered the territory method and the hypocenter distribution of the past in the first probability density function.

I applied this method for some aftershock activities. This method can determine 90% or more hypocenters automatically compared with JMA catalog (Inland, $M \geq 1.0$).

Keywords: automatic hypocenter determination, particle filter
Development of an automated source inversion system

Wataru Suzuki1*, Shin Aoi1, Takashi Kunugi1

1National Research Institute for Earth Science and Disaster Prevention

Source rupture process has now become one of the fundamental information to be released as soon as possible if a large and/or damaging earthquake occurs. The National Research Institute for Earth Science and Disaster Prevention (NIED) has conducted the source inversion for damaging earthquakes in Japan using strong-motion data recorded by K-NET and KiK-net. It takes at least about one day to derive and publish a preliminary but plausible result on Website. Due to speed up of the K-NET and KiK-net data retrieval, an improvement of strong-motion seismographs, an advancement of real-time estimation systems for the hypocenter location and source mechanism information, and a sophistication of computer systems, it has become feasible to perform the source inversion automatically just after the earthquake. We have developed a prototype system for the automated source inversion analysis using the NIED real-time data. The automated system will accelerate the first release of the information on the source rupture process.

Triggered by the seismic intensity data, the system collects the K-NET and KiK-net acceleration, and F-net velocity strong-motion data. The system also obtains the hypocenter location and the moment tensor solution automatically determined by the AQUA system using the Hi-net and F-net data. The fault models are constructed using this source information for the two nodal planes with several cases of the relative location of the hypocenter in the fault plane. An algorithm to select strong-motion data used for the inversion considers the epicentral distances, azimuthal coverage and the site response data of each station evaluated by Morikawa et al. (2007). The inversion method follows the procedure proposed by Sekiguchi et al. (2000, 2002). We test the automatic analysis procedure for the previous damaging earthquake data. For the 2008 Iwate-Miyagi Nairiku earthquake (Mw6.9), the slip distribution and the rupture progression pattern are in fairly good agreement with those derived in the previous study (Suzuki et al., 2010), though the slip amount and the total seismic moment are relatively larger. For the 2007 Noto Hanto earthquake (Mw6.7), the result is roughly consistent with that derived by Asano and Iwata (2011). We will run the system and test the performance with the real-time data.

Keywords: Source inversion analysis, Real-time earthquake information, Strong-motion data, Automatic analysis
The questionnaire survey on the Earthquake Early Warning

TAKEDA, Kiyoshi1, MATSUI, Masato1, Masaki Nakamura1*, YAMADA, Yasuyuki1

1JMA

Japan Meteorological Agency (JMA) conducted the nationwide questionnaire survey using the Web to grasp how the nation were aware of the Earthquake Early Warning (EEW) and evaluated it, how they got the EEW information including by the mobile phones, how they acted when they recognized the information and how often they took part in the practice. After that, we analyzed the relationship of the action to the awareness and the experience.

The results were the followings: The 77 percents of the respondents knew the EEW and the percentage was larger in Tohoku and Kanto regions, where they experienced the strong motions of the 2011 off the Pacific coast of Tohoku Earthquake (Mw9.0) and the aftershocks. The large majority of respondents stated that the EEW was useful and they tend to criticize the EEW stronger in the case of underestimate than that of overestimate. The percentage of the people who were able to take useful actions was larger in the case where they had the repeated experience or had the more positive evaluation of the EEW.

Please refer the following JMA homepage in detail:

Keywords: EEW, questionnaire survey, JMA