Large- and multi-scale earthquake cycle simulation

Kazuro Hirahara1,*, Makiko Ohtani1, Mamoru Hyodo2, Takane Hori2

1Grad. School Science, Kyoto University, 2JAMSTEC

Since the pioneering work of Tse and Rice (1986), earthquake (EQ) cycle simulations, based on rate and state friction laws, have been executed to successfully reproduce historical EQ cycles. In most of these simulations, we set a fault or plate interface in a half-space homogeneous elastic medium, on which frictional parameters are distributed, and simulate EQ cycles driven by a relative plate motion. In these simulations, we use a boundary-integral equation method to divide the fault or the plate interface into a number of cells smaller that the critical size determined from frictional parameters. And, by integrating the equation of motion combined with a rate and state frictional law, we trace the spatiotemporal slip evolution there. Current problems of these simulations are the needs for including 1) not quasi but fully dynamic rupture processes in earthquake cycle simulations, 2) the effects of structural heterogeneity and viscoelasticity in the medium, 3) the effect of pore pressure change in the fault zone throughout EQ cycles, 4) the examination of friction laws, especially at high slip rates. In addition, we are facing the need for large- and multi-scale EQ cycle simulations.

In this talk, we confine ourselves to discussing mainly quasi-dynamic EQ cycle simulations in a homogeneous elastic medium, taking into account the next generation super computer. First, we show the need for large- and multi-scale EQ cycle simulations, especially for interplate earthquakes at subduction zones. Namely, we need to 1) simulate cycles of giant EQs such as the 2011 Tohoku and the soon-coming Nankai EQs, and further the Japanese Island-scale EQ cycles including the interfaces of plates subducting beneath the whole Japan Islands, 2) simulate multi-scale EQ cycles including several sizes following the GR law in regional scales. These multi-scale simulations target the understanding of the different earthquake size distribution between the off-Tohoku and the Nankai focal regions, and of the temporal change in b-value before large earthquakes, and further the Nankai EQ simulations including short- and long-term slow slip events.

These large- and multi-scale simulations demand huge computational memories and CPU times. On the other hand, some researches have started to estimate frictional parameters based on physical models including rate and state friction laws through a method of data assimilation, which involves a large number of iterative computation. Therefore, we need to reduce memory sizes and CPU times required in EQ cycle simulations, and physics-based data assimilations. Dividing the fault or the plate interface into N cells, the multiplication of the slip response function matrix (NxN) and the slip deficit vector (N), that appears repeatedly in the simulations, requires memory sizes and CPU times of O(NxN). For reducing O(NxN) to O(N)-O(NlogN) in memory sizes and CPU times, we have used FFT(Fast Fourier Transform), FMM(Fast Multipole expansion Method) and recently H-matrices method. We review these reduction methods employed in EQ cycle simulations, and discuss the further challenge.

Keywords: Earthquake cycle, Large-scale simulation, Multi-scale simulation, Interplate earthquake, Subduction zone
Construction of 3D heterogeneous structure model in subduction zone and integrated simulation from earthquake generation

Tsuyoshi Ichimura, Takane Hori, Ryoichiro Agata, Mamoru Hyodo, Kazuro Hirahara, Munee Hori

1Earthquake Research Institute, the University of Tokyo, 2Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3Department of Geophysics, Earth and Planetary Sciences, Graduate School of Sciences, Kyoto University

Conventionally, elastic half space model is used for calculations of earthquake generation and crustal deformation. However, the structure in subduction zone is obviously heterogeneous in 3D and such heterogeneity of the structure and material properties should affect the deformation and stress changes due to earthquake faultings and subduction processes. Considering the future development in HPC for the coming 10-20 years, such heterogeneity will be fully introduced in the calculations. We have already developed a method for generating a high-fidelity 3D finite element (FE) model of crustal structure with more than 100,000,000 degree of freedom. A method for elastic wave propagation and crustal deformation analyses with the generated model is also proposed. Hence, it should be possible to demonstrate earthquake generation cycle simulations with much finer resolution along the fault or stochastic FEM calculations considering the ambiguity of structure heterogeneity if we use 100-1,000 times faster super computers which will appear in 10-20 years. It enable us to calculate various scenarios of earthquake generations with more appropriate error estimation depending on the observed data. Furthermore, we can combine the above structure model, which is Japan arc scale, and regional and/or local finer structure models and integrate the simulations from earthquake generation to ground shaking in a city.
Large-Scale High-Performance GPU Computing for Seismology

Taro Okamoto1*, Hiroshi Takenaka2, Takayuki Aoki3

1Dept. Earth Planet. Sci., Tokyo Institute of Technology, 2Dept. Earth Planet. Sci., Kyushu University, 3GSIC, Tokyo Institute of Technology

Simulation of seismic-wave propagation is essential in modern seismology in order to probe the Earth's and other planets' interiors, to study earthquake sources, and to evaluate the strong ground motions due to earthquakes for the seismic hazard analysis. The modeling of the seismic-waves is a computational challenge because of the effect of the structural heterogeneity and the required large domain size. The effect of the lateral heterogeneity is especially important for the shallow suboceanic earthquakes around Japanese islands where all the heterogeneities such as the steeply varying topography of the trenches, oceanic water layer, thick sediments, crust with varying thickness and subducting oceanic plate, can affect the excitation and propagation of the seismic-waves radiated from the earthquakes (e.g., Okamoto, EPS 2002; Nakamura et al. BSSA 2012). The scale length of the heterogeneity and topography is often small (a few hundred meters or even less than one hundred meters) and we need to use very small grid spacing in the simulation. Also, a very large domain size is often required because the fault size and the affected area can become large especially for the megathrust interplate earthquakes such as the 2011 Tohoku-Oki earthquake of which fault is roughly 200 km wide and 500 km long. Thus for the modeling of the seismic-waves we need all the resources for the high-performance computing, such as large-sized memory system, fast computing devices, fast interconnect network, and high-performance softwares.

In this paper we review our 3-D finite-difference time domain (FDTD) method developed for the simulation of seismic-wave propagation. As the accelerator, we use the GPUs in our simulation (Okamoto et al., 2010; 2013). The GPU (Graphics Processing Unit) is a remarkable device due to its multi-core architectures and high memory bandwidth. The GPU delivers extremely high computing performance at a reduced power and cost compared to conventional central processing units (CPUs): recent GPUs have achieved performances of about 3.5 to 3.9 TFLOPS in single precision arithmetic at power consumption of 225 to 235 W. Simulation of seismic wave propagation is a memory intensive problem which involves a large amount of data transfer between the memory and the arithmetic units, while the number of arithmetic computations is relatively small. Thus, the simulation can benefit from the high-memory bandwidth of the GPU, and various approaches to adopt GPU to the simulation have been proposed recently (e.g., Abdelkhalek et al., 2009; Aoi et al., 2009; Komatitsch et al., 2009, 2010; Micikevicius, 2009; Okamoto et al., 2010, 2013; Michea and Komatitsch, 2010).

We will show our recent results that were done by using several hundred to more-than one thousand of GPUs of the TSUBAME supercomputer in Tokyo Institute of Technology from the field of the seismology: the forward wave propagation in realistic 3D structure model for the Japanese islands, the inverse problem for the study of the earthquake sources using 3D Green's tensor waveforms, the computation of the sensitivity kernels for perturbations in the structural parameters of the earth model, and the simulation of scattering of seismic-waves from the moon-quakes as the feasibility study for the future seismic exploration of the moon and other planets. We will also discuss the future direction of the GPU computing in the field of seismology such as the real-time simulation of the wave propagation.

[References]

Keywords: GPU, seismic-wave propagation, rupture process, structure of the Earth, seismic exploration of planets, hazard analysis
High refining tsunami inundation simulation of the 2011 Great East Japan Earthquake

Taro Arikawa1,*, TOMITA, Takashi1

1Port and Airport Research Institute

As for the tsunami hazard, it was shown that there was a possibility to be able to become a catastrophe with destruction by extending to not the flood damage but the large area in the specific region due to the East Japan great earthquake that had been caused in 2011.

Then, the technique that whether it destroys it is only judged but also very it destroys it is appreciable is needed as an obtained lesson like the situation to date.

Therefore, the simulation tool that can be examined is indispensable, and a pressing need in the large area and the high-refining.

The present study verifies the tool that can examine the flood from the source of the tsunami to the town inside as a first step of the research, and examines the computational efficiency of the simulator that does high minute calculation in the town.

Keywords: the Great East Japan Earthquake, Tsunami, Inundation, Numerical Simulation, VOF, High performance computing
Future issues and expected role of HPC to solve them for risk management for earthquake and tsunami disaster

Norio Maki

1 Disaster Prevention Research Institute, Kyoto University

In risk management, it is necessary to prepare the organization that performs the following processes: risk assessment -> strategic planning -> construction of a standard emergency response system -> training. In Japan, for earthquake and tsunami disaster mitigation, it is constructed based on Disaster Countermeasures Basic Act. The important point is that it does not finish only with risk assessment but even construction of the system for making the strategy of how to response the risk. We will introduce the present condition of the organization and its future problems in the coming 10 - 20 years and also argue about the expected roles of next-generation HPC.
Quantification of Collapse Margin to Respond to ”Beyond Scenario Earthquakes”

Masayoshi Nakashima1, LIN, Xuchuan1, NOZAWA, Takashi1

1Disaster Prevention Research Institute, Kyoto University

The 2011 March 11 Tohoku Earthquake caused the most serious damage to the land and society in the modern history of Japan. The earthquake brought about serious damage, both physical and social, and left us with a variety of lessons. Earthquake engineering faces many challenges of research to comply with those lessons and build the environment that is safer and more secure. Among those, the following two themes, namely, (1) Response to earthquakes beyond what is considered in structural design and (2) Continuing business and prompt recovery, are considered to be most urgent for research and development. To carry out research to this end, those themes must be translated into specific engineering research subjects, and they are identified as: (A) Quantification of collapse margin of buildings and (B) Monitoring and prompt condition assessment of buildings. The first research subject, i.e. ”quantification of collapse margin” is most relevant to the first theme, i.e., ”response to earthquakes beyond design load”. For many plausible reasons, it is impractical that the design earthquake load is increased to the level of a very low-probability, huge earthquake event. Then, how should we compromise? A practical solution is to quantify the reserve capacity of the structure from the level corresponding to the design earthquake load to the level of ”collapse” at which people may lose their life. With such quantitative information at hand, we can argue in a sensible manner what would occur if the building were hit by an earthquake that is twice as large as the design earthquake load and we can also estimate the consequences of such an extreme event.

Suppose we accept the importance of quantification of collapse, are we equipped with means that can do so? The answer depends on the capacity of our numerical simulation technologies to trace the collapse of structures. Numerous efforts have been underway to this end, and various high-fidelity, advanced numerical simulation codes have been made available. However, the accuracy of collapse simulation has not yet been calibrated, and the utmost reason is the lack of ”actual, realistic data on structural collapse”. To resolve this issue, a comprehensive, five-year research program has been launched since last year. The program is named ”Special Project for Reducing Vulnerability in Urban Mega Earthquake Disasters” with the subtitle of: ”Maintenance and Recovery of Functionality in Urban Infrastructures”. In the project, large-scale tests on a steel high-rise building structure and a RC mid-rise building structure are being planned, and these structures are to be shaken to collapse. The project has a strong component of advanced numerical simulation in which the test data will be utilized as the benchmark data for the calibration of accuracies expected in the simulation. The paper introduces the outline and background of the new project, together with some preliminary outcomes.

Keywords: beyond scenario earthquake, collapse margin, large-scale shaking table test, numerical simulation
Creating future of solid Earth science with high performance computing (HPC): Introduction

Takane Hori\(^1\), Ryota Hino\(^2\), Yoshimori Honkura\(^3\), Yoshiyuki Kaneda\(^1\), Taro Arikawa\(^4\), Tsuyoshi Ichimura\(^5\), Takuto Maeda\(^5\)

\(^1\)Japan Agency for Marine-Earth Science and Technology, \(^2\)Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, To, \(^3\)Volcanic Fluid Research Center, Tokyo Institute of Technology, \(^4\)Port and Airport Research Institute, \(^5\)Earthquake Research Institute, the University of Tokyo

In this session, we explore scientific and social issues to be solved in Earth science for the next 10-20 years using high performance computing (HPC). We will discuss future problems and prospects in the development of solid Earth science, especially for simulation technology in earthquake and tsunami disaster mitigation, new methods for big data analyses of seismic waves and crustal deformation obtained by high-density observation networks, construction of multi-scale solid Earth model, and so on. We will introduce the contents of the white paper of the future plans for computer science in various fields including solid Earth science.
Mantle convection simulations on HPC: present and future

Masanori Kameyama1*, Takehiro Miyagoshi2, Mikito Furuichi2, Takashi Nakagawa2, Takatoshi Yanagisawa2, Tomoeki Nakakuki3, Masaki Ogawa4

1Geodynamics Research Center, Ehime University, 2IFREE/JAMSTEC, 3Hiroshima University, 4University of Tokyo at Komaba

In this presentation, we will discuss (a rather personal view of) the possible directions of the advanced numerical studies of mantle dynamics in concert with the progress of high-performance computing in the next era. We will start with a brief overview of the research targets and outcrops of the numerical modelings of mantle convection to date from a viewpoint of geosciences. Then we will discuss the scientific goals which the mantle dynamics researchers are to tackle with over a mid- to long-span of years, together with the technical issues in terms of both software and hardware developments.

Keywords: mantle convection, numerical simulations
An Approach to Exascale Visualization: Interactive Viewing of In-Situ Visualization

Tomoki Yamada1,∗, Akira Kageyama1

1Graduate School of System Informatics, Kobe University

In the coming era of exascale supercomputing, in-situ visualization is an inevitable approach to reduce the output data size. A problem of the in-situ visualization is that it loses interactivity unless a steering method is adopted. In this paper, we propose a new in-situ visualization method for exascale simulations. This method applies a lot of (hopefully millions of) in-situ visualizations at once with (thousands of) different visualizations taken from (thousands of) different cameras. The output in this strategy is not numbers, but movies. Even when a simulation produces one million of movies, the total output data size is only 10 TB when each movie is compressed to 10 MB. It should be noted that the size of 10 TB is rather small in the coming exascale era. The output of million movies will be analyzed as a post-processing in our proposed method. A specially designed movie player will read the million movie files and display a sequence of images in a window. By extracting a proper image sequence from different movie files, we can effectively walk through the visualization objects while the dynamic phenomena are shown in the window. To demonstrate the feasibility of the proposed method, we have performed a dynamo simulation in which 125 in-situ visualizations are applied. The visualization code is hybrid MPI-OpenMP. This calculation was performed on FX-10. We have also developed a movie player that reads hundreds of movie files and play a movie on a PC window. The movie player also has a function to show current position in or around the simulation region. We have confirmed that this method—in-situ visualization with interactive view—is not only feasible, but also practical for visualizations of large-scale simulations.

Keywords: large-scale visualization, in-situ visualization, parallel visualization
GPGPU-Accelerated Digital Signal Processing Method for Detection and Analysis of Repeating Earthquake

Taiki Kawakami1*, Kan Okubo1, Naoki Uchida2, Nobunao Takeuchi2, Toru Matsuzawa2

1Graduate School of System Design, Tokyo Metropolitan University, 2Graduate School of Science, Tohoku University

Repeating earthquakes are occurring on the similar asperity at the plate boundary. These earthquakes have an important property; the seismic waveforms observed at the identical observation site are very similar regardless of their occurrence time. The slip histories of repeating earthquakes could reveal the existence of asperities: The Analysis of repeating earthquakes can detect the characteristics of the asperities and realize the temporal and spatial monitoring of the slip in the plate boundary. Moreover, we are expecting the medium-term predictions of earthquake at the plate boundary by means of the Quantitative analysis of repeating earthquakes. Detailed information of stress concentration at quasi-static slip area and mechanism of energy deposition is indispensable to prediction of earthquake. Nowadays, GPS observation network also gives the peculiarity of quasi-static slip area. It is, however, not enough for analysis of ocean trench-type earthquakes.

Although the previous works have shown the existence of asperity and repeating earthquake and relationship between asperity and quasi-static slip area, the stable and robust method for automatic detection of repeating earthquakes has not been established yet. Furthermore, in order to process the enormous data (so-called big data) to speed up the computation of digital signal processing is an important issue.

Recently, GPU (Graphic Processing Unit) is used as an acceleration tool in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. The use of GPUs contributes to a significant reduction of the execution time in the digital signal processing of the huge seismic data.

In this study, we examine the high-speed signal processing of huge seismic data using the GPU architecture. We employ two signal processing methods: First, the band-limited Fourier phase correlation is applied as a fast method of detecting repeating earthquake. Secondly, we employ coherence function using three orthogonal components (East-West, North-South, and Up-Down) of seismic data as a detailed analysis of repeating earthquakes. These methods give us the correlation between two seismic data. Then, we evaluate the effectiveness of these methods. Moreover, we also examined the GPGPU acceleration technique for these methods. We compare the execution time between GPU (NVIDIA GeForce GTX 580) and CPU (Intel Core i7 960) processing. The parameters of both analyses are on equal terms. In case of band limited phase only correlation, the obtained results indicate that single GPU calculation is ca. 8.0 times faster than 4-core CPU calculation (auto-optimization with OpenMP). In case of coherence function using three components, GPU is 12.7 times as fast as CPU. It was found that both band-limited Fourier phase correlation and coherence function using three orthogonal components are effective, and that the GPGPU-based acceleration for the temporal signal processing is very useful. On the other hand, these methods also have some problems in the present; acceleration of data transfer between RAM to VRAM, time reduction of input/output operations. We are going to examine multi-GPU computing algorithm for more acceleration of signal processing framework.

Keywords: Repeating Earthquake, GPGPU, CUDA, Fourier phase correlation, Coherence
Multivariate Analysis of Geophysical Time-Series Data on a Cloud Computing System

Hiromichi Nagao¹, Tomoyuki Higuchi¹

¹The Institute of Statistical Mathematics

A multivariate analysis of time-series data based on the Bayesian statistics is always time-consuming especially in its com-
plex programming and much computation time. Although Research and Development Center for Data Assimilation, the Institute
of Statistical Mathematics provides software related to such Bayesian analysis, multivariate analysis requires many computer
resources, which are often hardly obtained.

We have developed web application "CloCK-TiME" (Cloud Computing Kernel for Time-series Modeling Engine), which en-
ables users to analyze their time-series data by using a networked PC cluster in a cloud computing system. A state space model
decomposes uploaded time-series data into trend, seasonal, autoregressive and observation noise components, each of which are
estimated using the particle filter algorithm. We show an application example in the case of tide gauge data recorded along the
coastline of Japan. Tide gauge observations along the coastline of Japan have recorded the land sinking due to the continuous
subduction of the oceanic plates. The proposed software extracts such long-term activities of the Earth’s crust together with rapid
displacements related to earthquakes, even before the establishment of the global positioning system, from monthly mean data of
the sea levels. The spatial and temporal distributions of the extracted trend component clearly indicate the subduction, near which
giant earthquakes have occurred or are predicted to occur. A multivariate analysis of the observatories located at the northeast
coast of Japan successfully determines the past crustal displacement in the case of the 1978 Off-Miyagi Earthquake.

Keywords: cloud computing, time-series analysis, multivariate analysis, tide gauge
Paradigm shift in a scientific methodology driven by big data

Tomoyuki Higuchi1*

1The Institute of Statistical Mathematics

We will give a brief introduction to the big data R&D and consider how big data makes an impact on a research style in earth science.

Keywords: big data, data assimilation
Creating future of solid Earth science with high performance computing (HPC): Concluding discussion

Ryota Hino1, Yoshimori Honkura2, Yoshiyuki Kaneda3, Taro Arikawa4, Tsuyoshi Ichimura5, Takuto Maeda5, Takane Hori3

1Tohoku University, 2Tokyo Institute of Technology, 3JAMSTEC, 4Port and Airport Research Institute, 5ERI, Univ. of Tokyo

How the evolution of "High Performance Computing (HPC)" contributes to progress in earth sciences? We will develop a perspective in the next 10 to 20 years based on comprehensive discussion provided in the session including invited talks. The aim of the concluding discussion is to integrate the opinions of attendees, both speakers and non-speakers, into a proposal for development of next generation HPC as a solution to important problems in terms of scientific break through and social relevance.

Keywords: High Performance Computing