Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AAS22-10

会場:301B

時間:5月20日11:30-11:45

気候監視のためのラジオゾンデ用鏡面冷却式露点計の開発 Development of a balloon-borne chilled-mirror hygrometer for climate monitoring

杉立 卓治 ¹*, 藤原 正智 ¹, 清水建作 ², 井端一雅 ³, 金井良之 ³ Takuji Sugidachi¹*, Masatomo Fujiwara¹, SHIMIZU, Kensaku², IBATA, Kazumasa³, KANAI, Yoshiyuki³

¹ 北海道大学環境科学院,² 明星電気株式会社,³ アズビル株式会社 ¹Hokkaido University, ²MEISEI ELECTRIC CO., LTD, ³Azbil Corporation

Atmospheric water vapor plays important roles in the global climate system. In upper troposphere and lower stratosphere, it contributes strongly to the radiative balance and influences variability of ozone layer through its photochemical nature. Accurate monitoring of water vapor is crucial for improving our understanding of climate change. Chilled mirror hygrometers have been used as transfer standard in laboratories and metrology labs, because this type of hygrometers can measure water vapor consentration with high accuracy. We have converted FINEDEWTM (Azbil Corporation), which is a chilled mirror hygrometer for industrial application, into a hygrometer for upper air observation. Because the FINEDEWTM uses a two-stage Peltier cooler, it does not need cryogen and thus is easy to handle. We have conducted flight tests in Japan and Indonesia to evaluate the performance. The results showed that this hygrometer has ability to measure atmospheric water vapor from the surface to the lower stratosphere. Also, simultaneous soundings with the Cryogenic Frostpoint Hygrometer (CFH) showed good agreement at least in the whole troposphere. With some more improvements, it is considered that our hygrometer will contribute to the monitoring of water vapor in the stratosphere as well as the tropsphere.

キーワード: 水蒸気, 気候, オゾン層 Keywords: Water vapor, Climate, Ozone layer