Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

Room:105

Time:May 23 11:00-11:15

Sulfate-climate coupling over the past 300,000 years in inland Antarctica

Yoshinori Iizuka^{1*}, Ryu Uemura², MOTOYAMA, Hideaki³, SUZUKI, Toshitaka⁴, MIYAKE, Takayuki⁵, HIRABAYASHI, Motohiro³, HONDOH, Takeo¹

¹Institute of Low Temperature Science, Hokkaido University, ²Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, ³National Institute of Polar Research, ⁴Department of Earth and Environmental Sciences, Faculty of Science, Yamagata University, ⁵School of Environmental Science, The University of Shiga Prefecture

Sulfate aerosols, particularly micrometer-sized particles of sulfate salt and sulfate-adhered dust, can act as cloud condensation nuclei, leading to increased solar scattering that cools Earth's climate. Evidence for such a coupling may lie in the sulfate record from polar ice cores, but previous analyses of melted ice-core samples have provided only sulfate ion concentrations, which may be due to sulfuric acid. Here we present profiles of sulfate salt and sulfate-adhered dust fluxes over the past 300,000 years from the Dome Fuji ice core in inland Antarctica. Our results show a nearly constant flux of sulfate salt flux, however, correlates inversely with temperature, suggesting a climatic coupling between particulate sulfur and temperature. For example, the total sulfate salt flux during the Last Glacial Maximum averages $5.78 \text{mgm}^{-2} \text{ yr}^{-1}$, which is almost twice the Holocene value. Although it is based on a modern analogue with considerable uncertainties when applied to the ice-core record, this analysis indicates that the glacial-to-interglacial decrease in sulfate would lessen the aerosol indirect effects on cloud lifetime and albedo, leading to an Antarctic warming of 0.1 to 5 kelvin.

Keywords: sulphate aerosols, cloud condensation nuclei, polar ice core, ice sublimation method