Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

ACG38-05

会場:101A

時間:5月21日10:00-10:15

MIROC 気候モデルにおけるフィードバックプロセスの北極域温暖化増幅への寄与 Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM

吉森 正和 ^{1*}, 渡部 雅浩 ¹, 阿部 彩子 ¹, 塩竈 秀夫 ², 小倉 知夫 ² Masakazu Yoshimori ^{1*}, Masahiro Watanabe ¹, Ayako Abe-Ouchi ¹, Hideo Shiogama ², Tomoo Ogura ²

The finding that surface warming over the Arctic exceeds that over the rest of the world under global warming is a robust feature among general circulation models (GCMs). While various mechanisms have been proposed, quantifying their relative contributions is an important task in order to understand model behavior and operating mechanisms. Here we apply a recently proposed feedback analysis technique to a GCM under different external forcings including elevated and lowered CO2 concentrations, and increased solar irradiance. First, the contribution of feedbacks to Arctic temperature change is investigated. Surface air temperature response in the Arctic is amplified by albedo, water vapor, and large-scale condensation feedbacks from that without a feedback although a part of it is suppressed by evaporative cooling feedback. Second, the contribution of feedbacks to Arctic amplification (AA) relative to global average is investigated. Under the positive radiative forcings, the albedo feedback contributes to AA predominantly through warming the Arctic more than the low latitudes while the evaporative cooling feedback contributes to AA predominantly by cooling the low latitudes more than the Arctic. Their relative effects vary with the applied forcing, however, and the latter dominates over the former in the increased solar irradiance and lowered CO₂ experiments. The large-scale condensation plus evaporative cooling feedback and the dynamical feedback contribute positively and negatively to AA, respectively. These results are consistent with an increase and a decrease of latent heat and dry-static energy transport, respectively, into the Arctic under the positive radiative forcings. An important contribution is thus made via changes in hydrological cycle and not via the 'dry' heat transport process. A larger response near the surface than aloft in the Arctic is maintained by the albedo, water vapor, and dynamical feedbacks, in which the albedo and water vapor feedbacks contribute through warming the surface more than aloft, and the dynamical feedback contributes by cooling aloft more than the surface. In our experiments, ocean and sea ice dynamics play a secondary role. It is shown that a different magnitude of CO2 increase introduces a latitudinal and seasonal difference into the feedbacks.

キーワード: 北極域温暖化増幅, 全球気候モデル Keywords: Arctic amplification, global climate model

¹ 東京大学大気海洋研究所, 2 国立環境研究所

¹The University of Tokyo/AORI, ²National Institute for Environmental Studies