Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

会場:コンベンションホール

時間:5月23日18:15-19:30

ALOS パンシャープン立体視画像による山体重力変形の微地形判読 - 2009 年台風モ ラコットによる台湾小林村の深層崩壊 Visualization of precursory features of Typhoon-induced Shiaolin landslide by ALOS pan-sharpened stereoscopic imagery

鄒 青穎¹*, 千木良 雅弘¹, 横山 隆三², 白沢 道生² Ching-Ying Tsou¹*, Masahiro Chigira¹, Ryuzo Yokoyama², Micho Sirasawa²

1 京都大学防災研究所, 2(株)横山空間情報研究所

¹Disaster Prevention Research Institute, Kyoto University, ²Yokoyama Geo-Spatial Information Laboratory

Precursory topographic features of gravitational slope deformation may provide a clue in predicting potential sites of catastrophic landslides. Visual photo-interpretation of high-resolution images such as optical satellite imagery and aerial photographs together with field survey remains the most used method to recognize the precursory topographic features and locate gravitational slope deformation. Here, we utilized ALOS pan-sharpened stereoscopic imagery of anaglyph to recognize the precursory topographic features before Typhoon Morakot-induced catastrophic Shiaolin landslide in southern Taiwan on 9 August 2009. Developed by the coauthors, Ryuzo Yokoyama and Michio Sirasawa, the ALOS pan-sharpened stereoscopic imagery is generated from the data of PRISM (a panchromatic stereo mapping sensor of 2.5 m resolution) and AVNIR-2 (a visible and near infrared sensor of 10 m resolution). We compared it with underlying geological structure that was exposed by the catastrophic landslide and was investigated after the event. The results indicate that the source area had the precursory topographic features: irregularly shaped bulges and depressions in many locations, suggesting the slope had been gravitational deformed beforehand. At least four of the locations were confirmed that the precursory topographic features were related to gravitationally deformed beds of alternating beds of sandstone and shale on a dip slope. The deformed beds were buckled and result in undulating beds or asymmetrical folds near the exposed ground surface. Consequently, the precursory topographic features might reflect the internal geological structures of the deformed slope. Besides, several slopes near the Shiaolin landslide site also appear as gravitational deformed slopes and can be characterized as potential sites of large and catastrophic landslides.

キーワード: ALOS パンシャープン立体視画像,山体重力変形,大規模地すべり, 微地形

Keywords: ALOS pan-sharpened stereoscopic imagery, gravitational slope deformation, catastrophic landslide, precursory topographic feature