Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

HGM03-03

会場:101B

マルチビーム測深地形図の解像度と礁地形の規模 Resolution of multibeam bathymetric mapping and the dimension of coral reef topography

菅 浩伸^{1*}, 長尾 正之², 中島洋典³, 堀 信行⁴, 横山 祐典⁵, 後藤 和久⁶, 大橋倫也¹, 鈴木 淳², 高田 慎⁷, 中野浩一⁷ Hironobu Kan^{1*}, Masayuki Nagao², Yosuke Nakashima³, Nobuyuki Hori⁴, Yusuke Yokoyama⁵, Kazuhisa Goto⁶, Tomoya Ohashi¹, Atsushi Suzuki², Shin Takada⁷, Kouichi Nakano⁷

¹ 岡山大,² 産総研地質情報,³ 有明高専,⁴ 奈良大,⁵ 東大大気海洋研,⁶ 東北大,⁷(株) 東陽テクニカ ¹Okayama Univ., ²Institute of Geology and Geoinformation, AIST, ³Ariake National College of Technology, ⁴Nara Univ., ⁵AORI, Univ. of Tokyo, ⁶IRIDeS, Tohoku Univ., ⁷Toyo Corporation

The complex reef topography such as spurs and grooves are difficult to visualize. This study attempts to observe 3D measuring and mapping of outer reef slope using high-resolution multibeam bathymetric sonar. The survey was carried out off the southern coast of Kume Island in the Ryukyu Islands, southwestern Japan. The minimum/maximum depth in the survey area was 0.2/284.7m in the measured area of 1.15×1.35 km. The reef topography was visualized with 2 m mesh-size for whole area, 1 m mesh-size for the area shallower than 60 m deep, and 0.2 m mesh-size at ~10 m deep. The bathymetric result was confirmed by SCUBA above the 40 m depth line.

The reef micro-topography (e.g., spurs and grooves) with the dimension ranges from units to tens of meters was visualized when 1 m mesh-size was adopted. The undulation associating with coral colonies which dimension is around tens of centimeters was not visible at the highest resolution map of 0.2 m mesh-size. The reef micro-topography was obscure when the mesh-size larger than 2 m was adopted. This comparison between the map resolution and the topographic dimension is useful for future bathymetric surveys.

Keywords: multibeam bathymetric survey, submarine topography, mapping, scale, coral reef, Kume Island

