Japan Geoscience Union Meeting 2013 (May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PCG32-P02

Room:Convention Hall

Time:May 20 18:15-19:30

⁴⁰Ar/³⁹Ar method using cosmogenic ³⁹Ar

Hironobu Hyodo^{1*}, Yuko Takeshima², Tetsumaru Itaya¹

¹RINS, Okayama Univ. of Sci., ²NEC Aerospace Systems, Ltd

Finding of ³⁹Ar of cosmogenic origin in meteorites was one of cues for developing ⁴⁰Ar/³⁹Ar method. If the production rate of ³⁹Ar is uniform, and if a long enough period elapses, the production and decay of ³⁹Ar reach to equilibrium since ³⁹Ar has a half life of 293 years. Eventually a rock or a mineral possesses a certain amount of ³⁹Ar depending on its potassium content. Using samples under the same exposure to cosmic ray, and determining an age of a sample, ⁴⁰Ar/³⁹Ar method can be applicable to the rest of unknowns. One of such possibilities may be to apply to samples on the lunar surface. No need for atmospheric contamination and ³⁶Ar measurement, and the application may be easier than that on the earth's surface. However, the method cannot be applied to samples in some depth or with different exposure histories.

Keywords: ³⁹Ar, cosmogenic, ⁴⁰Ar/³⁹Ar age, lunar surface, in situ measurement