Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PEM09-06

会場:101B

時間:5月23日10:15-10:30

航空機からのハイスピードカメラ観測により明らかとなった スプライトストリーマ の時間・空間進展機構 Spatial and Temporal Evolution of Sprite Streamers Derived from High-Speed Camera Data in Aircraft Observation Campaign

小林 縫^{1*}, 佐藤 光輝¹, 高橋 幸弘¹, 工藤 剛史¹, 三宮 佑介¹, 井上智広², H. C. Stenbaek- Nielsen³, Matthew G McHarg⁴, Ryan K Haaland⁵, Takeshi Kammae³, Yoav Yair⁶, Walter A Lyons⁷, Steven A Cummer⁸, NHK Cosmic Shore Project² Nui Kobayashi^{1*}, Mitsuteru Sato¹, Yukihiro Takahashi¹, Takeshi Kudo¹, Yusuke Sanmiya¹, Tomohiro Inoue², H. C. Stenbaek-Nielsen³, Matthew G McHarg⁴, Ryan K Haaland⁵, Takeshi Kammae³, Yoav Yair⁶, Walter A Lyons⁷, Steven A Cummer⁸, NHK Cosmic Shore Project²

¹ 北海道大学理学院宇宙理学専攻, ²NHK 制作局 宇宙の渚プロジェクト, ³Univ. of Alaska, Fairbanks, AK, United States, ⁴US Airforce Academy, Colorado Springs, CO, United States, ⁵Fort Lewis College, Durango, CO, United States, ⁶Open University, Ra'anana, Israel, ⁷FMA Research, Ft Collins, CO, United States, ⁸Duke University, Durham, NC, United States ¹Department of Cosmosciences, Hokkaido Univ., Sapporo, Japan, ²Japan Broadcasting Corp. NHK Cosmic Shore Project, Tokyo, Japan, ³Univ. of Alaska, Fairbanks, AK, United States, ⁴US Airforce Academy, Colorado Springs, CO, United States, ⁵Fort Lewis College, Durango, CO, United States, ⁶Open University, Ra'anana, Israel, ⁷FMA Research, Ft Collins, CO, United States, ⁸Duke University, Durham, NC, United States, ⁸Duke University, Ra'anana, Israel, ⁷FMA Research, Ft Collins, CO, United States, ⁸Duke University, Durham, NC, United States, ⁸Duke University, Durham, NC, United States, ⁸Duke University, Ra'anana, Israel, ⁷FMA Research, Ft Collins, CO, United States, ⁸Duke University, Durham, NC, United States, ⁸Duke University, Durham,

The occurrence conditions of sprites streamers still remain to be an unsolved problem after the discovery of sprites. Though the detailed three-dimensional spatial structures and the temporal evolution of sprite streamers are the key parameters to clarify the occurrence conditions, these spatiotemporal characteristics are not clearly identified. In order to specify the detailed spatial and temporal evolution of sprite streamers, we have conducted the optical observation campaign using high-speed cameras from two jet aircrafts in summer US. In this campaign, we succeeded to capture sprite images for 28 events by the high-speed cameras with a sampling rate over 8,000 fps at each aircraft simultaneously. Using these image data, we have performed triangulation analysis to estimate the horizontal spatial distribution and vertical extent of sprite streamers. We have analyzed two types of columniform sprites; one is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dense inhomogeneous halo, and the other is the columniform sprite with a preceding dens