Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PEM28-05

Time:May 23 10:00-10:15

A Parametric Sensitivity Study for Magnetosphere-Ionosphere Coupling Process in a Global MHD Simulation

Satoko Saita^{1*}, Akira Kadokura², Shigeru Fujita³, Takashi Tanaka⁴, Akira Sessai Yukimatu², Shinichi Ohtani⁵, Ken T. Murata⁷, Tomoyuki Higuchi⁶

¹TRIC, ²NIPR, ³Meteorological College, ⁴SERC, Kyushu University, ⁵JHU/APL, ⁶ISM, ⁷NICT

We present a parameter study of simulated processes of the magnetosphere-ionosphere (M-I) coupling using the global MHD simulation code developed by Tanaka (2010).

The boundary conditions for the M-I coupling include some scaling factors. These factors are adjustable and are determined through trial and error. The main goal of this study is optimization of these scaling factors in the boundary condition by use of a data assimilation technique.

In this paper, we examine the effects of varying the scaling factors to the ionospheric electric field potential map using a global MHD simulation.

References:

Tanaka, T., A. Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, and K. K. Hashimoto (2010), Substorm convection and current system deduced from the global simulation, J. Geophys. Res., 115, A05220, doi:10.1029/2009JA014676

Keywords: global MHD simulation, sensitivity analysis, ionospheric electric field potential map, aurora, ionospheric conductivity, field-aligned current