Japan Geoscience Union Meeting 2013 (May 19-24 2013 at Makuhari, Chiba, Japan) ©2013. Japan Geoscience Union. All Rights Reserved. PPS21-P04 Room:Convention Hall Time:May 20 18:15-19:30 ## Laser shock compression experiments for precompressed Methane in Mbar regime Tsuyoshi Ogawa^{1*}, Norimasa Ozaki¹, Marius Millot³, Takayoshi Sano², Yuto Asaumi¹, Syotaro Iketani¹, Hiroyuki Uranishi¹, Mika Kita¹, Yoshihiko Kondo¹, Yuya Sato¹, Kazuki Nakatsuka¹, Kohei Miyanishi¹, Yang Tsung-Han¹, Raymond Jeanloz³, Burkhard Militzer³, Gilbert W. Collins⁴, J. Ryan Rygg⁴, Jon H. Eggert⁴, Philip Sterne⁴, Youichi Sakawa², Ryosuke Kodama¹ ¹Graduate School of Engineering, Osaka University, ²Institute of Laser Engineering, Osaka University, ³University of California Berkeley, ⁴Lawrence Livermore National Laboratory The properties of methane at high density and temperature are of crucial interest for understanding the interiors of many giant planets, and the origin of their strong magnetic fields, as CH4 is typically considered to represent 25 % of the planet's icy layer. Methane is a hydrogen-rich molecular material that is expected to dissociate at high pressure and temperature into an electrically conductive fluid. We used static and dynamic coupling compression technique to generate icy planets core conditions in laboratory. Methane was precompressed to ~0.4 GPa by DAC and then was shock compressed dynamically to pressures of more than 100 GPa. We simultaneously measured pressure, density, temperature, and optical reflectivity for the highly compressed methane with velocity interferometers (VISAR) and optical pyrometer (SOP). This work was performed under the joint research project of the ILE, Osaka University. This work was partially supported by grants from the Core-to-Core Program of the JSPS, the Global COE Program CEDI of the MEXT, and the CREST of the JST. Keywords: High-Power Laser, static and dynamic coupling compression, Methane, DAC