Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PPS24-P10

会場:コンベンションホール

Be-B 法を用いた melilite に富む CAI の年代決定の試み Beryllium-bron measurment of a melilite-rich calcium-aluminium-rich inclusions in the NWA5958 CM choudrite

山野辺 正邦^{1*}, 中村 智樹¹, 嘉数 勇基², 石田 初美¹ Masakuni Yamanobe^{1*}, Tomoki Nakamura¹, Yuki Kakazu², Hatsumi Ishida¹

¹ 東北大理学研究科, ²CSNSM Univ. Paris Sud-CNRS/IN2P3

¹Facluty of Tohoku University, ²CSNSM Univ. Paris Sud-CNRS/IN2P3

CAIs (Ca, Al-rich Inclusions) are the oldest object in the solar system. In CAIs, there are evidence of now-extinct isotopes like 26 Al and 10 Be. They have a short-half-life (<100Ma) and because of short-half-life, they are expected to indicate an accurate relative age. In order to estimate a relative age using now-extinct isotopes, it is required that they were homogeneously distributed in the solar nebula. In terms of 26 Al, it has been almost already proven that they were homogeneously distributed in the solar nebula, while 10Be has not proven yet. 26 Al decays by electron capture to 26 Mg with a half-life of 0.71Ma. 10 Be *B*-decays to 10 B with a half-life of 1.5Ma. In terms of Al-Mg chronology, it is difficult to detect excess of 26 Mg in CAIs which experienced late-stage alteration (e.g reheating in the nebula or asteroids), because the Mg diffusion in anorthite where Al-Mg measurements were made is fast. The B diffusion, however, in melilite where Be-B measurements were made is slow. Therefore, it is suggested that Be-B chronology is effective way to measure a relative age of CAIs which experienced late-stage alteration. Hence, it is significant to confirm that 10 B was distributed in solar nebula homogeneously or heterogeneously.

In this study, we have carried out Be-B measurements in one CAI (Type-A CAI) from CM chondrite NWA5958. This CAI consists mainly of a large melilite crystal and small spinel and perovskite are contained as inclusions in the melilite. Our SIMS measurements at Tohoku University showed that this CAI has ¹⁰B excesses in melilite. The initial ¹⁰Be/¹⁰B ratio inferred 4.6×10^{-2} . This ratio is much higher than those obtained in other CAIs from CV chondrites (e.g. 9.5×10^{-4} ; MacPherson et al. 2003, 7.2×10^{-4} ; Sugiura et al. 2001). We have also analyzed rare earth elements (REEs) abundance and oxygen isotopes ratios of this CAI. Melilite shows nearly flat (unfractionated) CI-normalized REEs pattern with anomalies in Eu and ¹⁶O-rich composition, whereas melilite in this CAI formed from a melt, thus the CAI experienced melting by reheating in the nebula. ¹⁶O-rich oxygen isotope ratios suggest that this CAI stayed nearer the Sun, while CAIs in CV chondrite stayed away from the Sun because of ¹⁶O-poor composition of melilite. Our result implies that the nebula gas near the Sun contained much more ¹⁰Be than the gas far from the Sun. This suggests that ¹⁰B was distributed in solar nebula heterogeneously and Be-B system can't measure a relative age.

キーワード: Be-B 法, CAI, メリライト Keywords: Be-B system, CAI, melilite