Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PPS25-01

Room:102B

Time:May 22 14:15-14:30

Co-evolution of water and organic compounds through surface reactions on interstellar grains

Yasuhiro Oba^{1*}, Naoki Watanabe¹, Hiroshi Hidaka¹, Tetsuya Hama¹, Takeshi Chigai¹, Kazuaki Kuwahata¹, Akira Kouchi¹

¹Institute of Low Temperature Science, Hokkaido University

Various kinds of molecules have been found in interstellar molecular clouds, which are the birthplace of stars and planets. Those molecules are mainly formed by the following two types of reactions: ion-molecule reactions in the gas phase and surface reactions on interstellar grains. Ion-molecule reactions have been well studied theoretically and experimentally for a long time, which resulted in a better understanding of chemical reactions in molecular clouds. However, since the observed abundance of major interstellar molecules such as H_2O , H_2CO , and CH_3OH cannot be explained by gas-phase synthesis only, it is now widely accepted that grain-surface reactions are essential for the formation of those interstellar molecules.

We have experimentally showed that quantum tunneling plays a significant role for chemical reactions to produce water and organic molecules on interstellar grains at as low as 10 K. In this talk, we will review recent progresses in the experimental studies on the formation of water and organic molecules through quantum-tunneling reactions on interstellar grains at very low temperatures.