Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

SGC54-P06

Room:Convention Hall

Time:May 20 18:15-19:30

Effective pair potential for Ca-O bonds in CaGeO₃ perovskite, garnet, wollastonite

Ai koganemaru^{1*}, Akira Yoshiasa¹, Hiroshi Arima², Tomotaka Nakatani¹, Rin Wan¹, Maki Okube³, Akihiko Nakatsuka⁴, Osamu Ohtaka⁵, Kazumasa Sugiyama²

¹Kumamoto University, ²Tohoku University, ³Materials and Structures Lab. Tokyo Institute Technology, ⁴Yamaguti University, ⁵Osaka University

The CaGeO₃ perovskite and garnet were synthesized in a cubic anvil type apparatus under high pressure. The measurements of Ca and Ge K- edge XAFS spectra were carried out in the transmission mode at temperature up to 700 K. The effective pair potentials $V(u)=au^2/2+bu^3/3!$, for Ca-O bond in various phases of CaGeO₃ have been investigated by the temperature dependence of EXAFS Debye-Waller factors. The potential coefficient a for the Ca-O bond in perovskite-type CaGeO₃ is small, 4.4 eV/A², compared with those in garnet (6.0 eV/A²) and wollastonite (6.4 eV/A²). The potential for Ca-O bond in perovskite is broader than those in other CaGeO₃ polymorphs, which is one reason for the Clausius-Clapeyron's curve for perovskite-garnet phase boundary having a negative slope. The potential coefficients for the Ca-O in perovskite are significantly smaller than those for the longer Ge-Ge distances as the framework vibration though the potential coefficient decreases usually as a result of the larger bond distance.