Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

SGL40-P02

Room:Convention Hall

Time:May 19 18:15-19:30

Reduction of extraneous 40Ar contamination for accurate K-Ar age determinations: an experimental study in various sample

Seiko Yamasaki^{1*}, Shotaro Isobe², Hiroki Sato², Takahiro Tagami²

¹Geological Survey of Japan, AIST, ²Kyoto University

A fundamental assumption of K-Ar dating is that the samples initially contained no radiogenic ⁴⁰Ar, but sometimes rocks contain radiogenic ⁴⁰Ar called extraneous ⁴⁰Ar. Some previous study reported argon isotopes of historical lavas had anomalously high ⁴⁰Ar/³⁶Ar ratios, and show old apparent ages. Since extraneous ⁴⁰Ar is likely contained in the phenocrysts and xenoliths, groundmass samples are generally prepared for analysis. Besides, Ozawa et al. (2005) showed fine-grained grandmas samples had less extraneous ⁴⁰Ar contamination, and suggested that extraneous ⁴⁰Ar is contained in fluid inclusions or vesicles and released during crushing. We measure argon isotopic ratios in various sizes of young lava samples, and investigated the reduction of extraneous ⁴⁰Ar contamination. The finer samples roughly showed lower ⁴⁰Ar/³⁶Ar ratios but more difficult to handling of the preparation such as mineral separation and wrapping in foils for isotopic measurements.

Keywords: K-Ar dating, extraneous 40Ar, sample size