(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-01

会場:104

時間:5月26日16:15-16:30

古代タンパク質の復元に基づく全生物の最後の共通祖先の生育環境の復元 Estimation of the environmental condition at the early evolutionary periods by resurrection of ancient proteins

横堀 伸一 ^{1*}; 別所 瑞萌 ¹; 笹本 峻弘 ¹; 中島 慶樹 ¹; 赤沼 哲史 ¹; 山岸 明彦 ¹ YOKOBORI, Shin-ichi^{1*}; BESSHO, Mizumo¹; SASAMOTO, Takahiro¹; NAKAJIMA, Yoshiki¹; AKANUMA, Satoshi¹; YAMAGISHI, Akihiko¹

1 東京薬科大学・生命科学部・応用生命科学科

地球上の生命の起源と進化を理解する上で、初期の生命の生育環境を明らかにすることは重要である。しかし、現生生物の祖先となる生物の生育環境を推測することは、地球上の生命の初期進化に関する地質記録は極めて限られており、容易ではない。

Woese 等 (1990, PNAS, 87: 4576-4579) が作製した 16S/18S rRNA に基づく系統樹によれば、現生生物は 3 つのドメイン、古細菌 Archaea、真正細菌 Bacteria、真核生物 Eukarya、に分かれ、共通祖先をもつ。異論はあるが、それぞれ単系統群である古細菌と真核生物は姉妹群であり、全生物の最後の共通祖先(LUCA。我々は Commonote と呼んでいる)の位置は、真正細菌と古細菌+真核生物の間であると考えられる。全生物の共通祖先が存在したとすると、次の疑問はその共通祖先がどのような生物であったかである。「全生物の共通祖先は超好熱菌であった」であるという仮説が Pace (1991, Cell, 65: 531-533) によって提案されたが、その解釈に対する反論も多かった。しかしながら、これらの議論のほとんどは、分子系統解析により全生物の共通祖先の核酸の G+C 含量やアミノ酸組成を推定し、そこから生育温度を推論したものであり、実験的に検証されたものではない(例えば Galtier et al. (1999, Science, 283:220-221)、Boussau et al. (2008, Nature, 456:942-945)、Groussin et al. (2013, Biol. Lett., 9: 20130608))。しかし、近年、分子系統解析による祖先蛋白質のアミノ酸配列の推定と、その配列をコードする祖先型遺伝子の実験的な復元が、過去の生物の性質を理解するために行われるようになって来た(例えば Gaucher et al. (2003, Nature, 425: 285-288)。

ヌクレオシドニリン酸キナーゼ(NDK)は、至適生育温度が異なる様々な微生物の NDK の変性温度が至適生育温度と強い相関を持つ。そのため、祖先配列の推定から復元した NDK の変性温度から、その NDK を持った過去の生物の生育温度環境を推定することができる。そこで我々は、古細菌共通祖先生物 (LACA) と真正細菌共通祖先生物 (LBCA) の持っていたと考えられる NDK のアミノ酸配列を推定し、遺伝子工学的手法により復元した祖先 NDK 遺伝子を大腸菌内で発現し、祖先 NDK の精製と熱変性測定をおこなった。復元した LACA NDK、LBCA NDK は、どちらも変性中点温度が 100 ℃を超える高い耐熱性を有していた。よって、LACA と LBCA はそれぞれ超好熱菌であったと推定された。また、LACA NDK と LBCA NDK の配列はよく似ており、Commonote の NDK も同様なアミノ酸配列を持っていたことが期待されたことから、LACA NDK と LBCA NDK の配列から Commonote NDK の配列を作製した。その変性温度は 90 ℃以上であり、この NDK を持った全生物の共通祖先 (Commonote) は 75 ℃以上に生息する好熱菌であったと考えられた (Akanuma et al. 2013, PNAS, 110: 11067-11072)。

また、LUCA/Commonote が好冷菌ないしは常温菌であったと推定した Boussau 等 (2008) や常温菌ないしは中等度好熱菌であったと推定した Groussin 等 (2013) の推定の根拠の一つは、進化の過程でのアミノ酸組成の変化を許容する分子系統樹推定法を用いて推定した Commonote の蛋白質のアミノ酸組成であった。我々は、同様の分子系統樹推定法を用いて新たに LACA NDK、LBCA NDK、そして Commonote NDK のアミノ酸配列を推定し、遺伝子工学的手法により復元した祖先 NDK 遺伝子を大腸菌内で発現、精製を行った。これらの LACA NDK、LBCA NDK、ならびに Commonote NDK の変性中点温度はいずれも $100\,^{\circ}$ C以上であり、LACA、LBCA、Commonote はいずれも、好熱菌ないしは超好熱菌であったと推定された。

以上の結果は、古細菌共通祖先生物 (LACA)、真正細菌共通祖先生物 (LBCA) がともに(超)好熱菌であり、全生物の最後の共通祖先 (LUCA/Commonote) が(超)好熱菌であったことの実験的な証拠と言える。また、祖先 NDK の酵素活性の pH 依存性を現生生物の NDK と比較することで、祖先生物の細胞内環境の推定も試みているので、その結果についても紹介する。

キーワード: コモノート(全生物の最後の共通祖先), 祖先蛋白質復元, ヌクレオシドニリン酸キナーゼ, 好熱菌 Keywords: Commonote, resurrection of proteins, nucleoside diphosphate kinase, thermophiles

¹Dept. Applied Life Sci., Sch. Life Sci., Tokyo Univ. Pharm. Life Sci.

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-02

会場:104

時間:5月26日16:30-16:45

祖先型プロモーター配列推定に基づく大気酸素濃度進化とシアノバクテリア抗酸化 酵素遺伝子発現量との関連性の解明

Understanding the relationship between rise of oxygen and gene expression of cyanobacterial antioxidant enzymes

原田 真理子 1* ; 古川 龍太郎 2 ; 横堀 伸一 2 ; 田近 英一 3 ; 山岸 明彦 2 HARADA, Mariko 1* ; FURUKAWA, Ryutaro 2 ; YOKOBORI, Shin-ichi 2 ; TAJIKA, Eiichi 3 ; YAMAGISHI, Akihiko 2

¹ 東京大学大学院理学系研究科, ² 東京薬科大学生命科学部分子生命科学科, ³ 東京大学大学院新領域創成科学研究科 ¹The University of Tokyo, ²Tokyo University of Pharmacy and Life Science, ³The University of Tokyo

Though free oxygen (O_2) was absent from the atmosphere during the first half of Earth's 4.5-billion-year history, which is considered to have increased dramatically at the beginning and the end Proterozoic (\sim 2.2 and \sim 0.6 billion years ago, respectively). Recent geochemical data suggest that such transitions to an oxic atmosphere were not unidirectional, but appear to have associated with an overshoot and/or a downshoot of the O_2 levels. Such dynamic changes in the redox conditions in the atmosphere must have posed severe environmental stresses to life on Earth. However, how the changes in the O_2 levels affected the biosphere has been poorly understood. Answering this question is of fundamental importance in understanding Earth's history.

Here we focused on the changes in the expression of genes encoding antioxidant enzymes of cyanobacteria through history. Changes in environmental O_2 levels must have affected the production of reactive oxygen species, which in turn affected antioxidant gene expression. Gene expression is regulated by the nucleotide sequence in the promoter regions. Thus we hypothesized that the ancestral promoter sequences of the antioxidant enzymes may reflect the environmental O_2 levels at the time the ancestor existed. In this study, we resurrected the ancestral promoter sequences of the antioxidant enzymes, and discuss its relationship to the O_2 evolution through time. In this presentation, we will first introduce recent models of the atmospheric O_2 evolution through Earth's history, then we will report our progress in resurrecting ancestral promoter sequences of cyanobacterial antioxidant enzymes.

キーワード: 大酸化イベント, 抗酸化酵素, シアノバクテリア Keywords: rise of oxygen, antioxidant enzymes, cyanobacteria

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-03

会場:104

時間:5月26日16:45-17:00

原生代海洋ユーキシニアのダイナミクスと生物圏への影響 Dynamics of Proterozoic oceanic euxinia and its impact on the biosphere

尾崎和海1*;田近英一2

OZAKI, Kazumi^{1*}; TAJIKA, Eiichi²

- 1 東京大学 大気海洋研究所, 2 東京大学 大学院新領域創成科学研究科
- ¹AORI, The University of Tokyo, ²Graduate School of Frontier Sciences, The University of Tokyo

Proterozoic is characterized by substantial changes in the redox state of atmosphere and oceans at both ends of the eon and stasis between them. Accumulating geological/geochemical records demonstrate that the first major oxygenation of the Earth's surface at 2.45-2.22 billion years ago (Ga) (known as "Great Oxidation Event") may have been followed by a subsequent drop of atmospheric oxygen level at the end of the Lomagundi-Jatuli event (LJE) (~2.08-2.05 Ga). Such waxing and waning of the oxygenation state of Earth's surface would have caused substantial changes in oceanic chemical composition and would surely have impacted the biosphere. In this context, the evidence for strongly sulfidic (euxinic) oceanic environments in the LJE aftermath in Gabon and Karelia are notable because their low molybdenum isotopic values (less than 0.95 % and 0.85 %, respectively) imply widespread euxinia at that time. The spatiotemporal variation of euxinia should have played a crucial role in Proterozoic biological and geochemical evolution not only because of its toxicity to eukaryotes but also because of its fundamental role on bioessential trace metal availability in the ocean interior. However, the nature of oceanic biogeochemical dynamics and its impact on the biosphere in the Proterozoic remains unclear.

To investigate the dynamics of oceanic biogeochemical response during the Paleoproterozoic eon, we improved upon the CANOPS model, in which coupled C-N-O-P-S marine biogeochemical cycles and a series of redox reactions were adequately taken into account. We newly developed an open system modeling approach for marine sulfur cycling in which the oceanic sulfur balance is explicitly evaluated.

In this study we show that a plausible cause and effect chain of events that is consistent with the geological records of the LJE aftermath can be obtained when a dramatic decrease in atmospheric oxygen level (from >50% PAL to <1% PAL; PAL=present atmospheric level) is assumed: the deoxygenation of an atmosphere-ocean system stimulates the microbial sulfate reduction, resulting in a transitional (~20 Myr) expansion of euxinia until the ocean reaches a new steady state. A mass balance calculation of Mo also demonstrates that LJE aftermath is marked by an expansion of euxinia to ca. 9-40% of the whole seafloor. Under such conditions Mo levels would decrease to as low as ca. 2.0-6.5 nM where nitrogen fixation by Fe-Mo nitrogenase is very sensitive to Mo concentration. We therefore suppose that waxing and waning of the atmospheric oxygenation state in the Paleoproterozoic could have affected evolution and diversification of the aerobic bacteria and/or eukaryotes through dynamic oceanic euxinia.

キーワード: 原生代, 海洋酸化還元状態, 海洋物質循環モデル, ユーキシニア

Keywords: Proterozoic, oceanic redox states, ocean biogeochemical cycle model, euxinia

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-04

会場:104

時間:5月26日17:00-17:15

南中国のエディアカラ紀からカンブリア紀初期における窒素同位体化学層序 Nitrogen isotope chemostratigraphy from the Ediacaran to early Cambrian in South China

小宮剛1*;西澤学2;土谷祐貴1

KOMIYA, Tsuyoshi 1* ; NISHIZAWA, Manabu 2 ; TSUCHIYA, Yuki 1

The earth is only the planet where higher forms of life exist. The appearance and evolution of metazoans are the most important issue of the evolution of the earth and life, but the causes are still obscure. It is considered that increase in oxygen content of atmosphere and seawater resulted in the evolution, but the evidence for correlation between the increase in the oxygen content and biological evolution is poor. This study focuses on nitrogen that is one of the most important nutrients at present. Preservation of continuous and fossiliferous strata from the Ediacaran to the Cambrian, South China is suitable for reconstruction of secular change of compositions of seawater through the time. This study presents secular change of nitrogen cycle from the Ediacaran to the Early Cambrian including shallow marine and deep-sea environments based on chemostratigraphies of organic nitrogen isotopes of shallow marine and deep-sea environments.

We obtained the nitrogen isotope ratios of organic nitrogen in black shales and carbonate rocks of drill core samples from the Shuijingtuo and Shipai Formations. The nitrogen isotope ratios gradually increase from -1 to +3 permil in Shuijingtuo Formation whereas they are fluctuated between +2 and +4 permil in Shipai Formation. In addition, the variation of the nitrogen isotope ratios is not related with difference of lithology: carbonate rocks and black shale, respectively. In addition, no correlations between the nitrogen isotope ratios and C/N ratios or total N contents are found. The results indicate that the variation in the nitrogen isotope values is not artificial due to lithological change and secondary alteration but it was caused by environmental change in the Early Cambrian. The nitrogen isotope ratios gradually increase in the black shale of the upper Shuijingtuo Formation, suggesting decrease of the nitrate content of the seawater. In other words, it shows that the nitrate-rich environment was terminated and both nitrate and phosphate started to be limited since the beginning of the Botomian, namely mid-Cambrian Series2 possibly due to increasing primary productivity. Namely, modern-style marine nutrient cycle was established in the early Cambrian. The higher primary productivity led to increase of the oxygen content of the atmosphere and ocean, promoting the Cambrian explosion.

Carbon isotope chemostratigraphy is often used for comparison among sections because of lack of key fossils in the Ediacaran. However, it is well known that carbon isotope ratios of organic carbon were decoupled with those of carbonate carbon in the Ediacaran. In addition, the inorganic carbon isotope chemostratigraphies are highly distinct between shallow marine and deep-sea environments in the Ediacaran. They make it impossible to compare shallow water environments with and deep-sea environments based on the carbon isotope chemostratigraphies. In order to establish a new tool for the comparison, we analyzed nitrogen and carbon isotope ratios of organic matter of Yuanling section, deposited in a deep-sea environment, in South China from Ediacaran to early Cambrian. The results show that the pattern of nitrogen isotope chemostratigraphy in Yuanling section is similar to that in the Three Gorges area, platform sediments, from the Ediacaran to the Early Cambrian, indicating the nitrogen isotope is useful to compare between the shallow marine and deep-sea sediments. The nitrogen isotope ratios of the deep-sea sediments in the Ediacaran are lower than those of the shallow marine sediments. The difference may be because pelagic environment was more enriched in nitrate than platform environments in photic zone.

キーワード: エディアカラ紀, カンブリア爆発, 窒素同位体, 海洋栄養塩, 生物進化, 地球史

Keywords: Ediacaran, Cambrian explosion, Nitrogen isotopes, Nutrients, Biological evolution, History of the earth

¹ 東京大学総合文化研究科、駒場,2 海洋研究開発機構

¹Department of Astronomy & Earth Sciences, The University of Tokyo, Komaba, ²Japan Agency for Marine-Earth Science and Technology

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-05

会場:104

時間:5月26日17:15-17:30

イメージングと高分解能 U-Th-Pb 年代測定法をくみあわせた炭酸塩の年代学と地球ゲノム計画

Coupling of Imaging Mass Spectrometry and High Resolution U-Th-Pb Geochronology on Carbonates for the Earth Genomics

坂田 周平¹; 平田 岳史 ^{1*}

SAKATA, Shuhei¹; HIRATA, Takafumi^{1*}

Time-resolved elemental and isotopic data can provide key information about the time changes in the surface geochemical conditions of the Earth, and therefore, critical restriction for the origin and the evolutional sequence of the life on the Earth could be evaluated. To obtain reliable and exclusive information from the samples, tremendous efforts have been made to improve both the analysis spatial resolution and the precision in the resulting ages. Especially for the young samples, correction of isotope disequilibrium is still key issue to obtain reliable age data. Recently, we have developed new correction method for the initial disequilibrium, and therefore, application range for the U-Th-Pb geochronology could be remarkably extended to the young samples (e.g., <0.1 Ma). The U-Th-Pb age determinations have been widely applied for the U-Th-bearing mineral such as zircon, monazite or apatite, which would have high closure temperatures for the U-Th-Pb decay series isotopes. Despite the obvious success in obtaining reliable age data for these U-Th bearing minerals, age determination for other minerals of different closure temperature is highly desired. Many geologists are increasingly interested in processes in rocks that operate under the lower temperatures. To achieve this, we have focused on the U-Th-Pb age determinations for carbonates. The in-situ U-Th-Pb age determinations for carbonates have been retarded mainly due to very low U-contents in the carbonates (e.g., <1 ug/g). Moreover, system closure could be easily lost through the geological time. To measure precise Pb/U and Pb/Th isotope ratio from the carbonates, coupling of laser sampling and the high sensitivity ICPMS system was employed. Hence, all the ²⁰²Hg, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ²³⁸U signals were simultaneously measured using six high-sensitivity ion multipliers. This multiple collector (MC) system provides much higher duty cycle over the traditional isotope ratio measurements. Sensitive in-situ U-Th-Pb isotope ratio measurements can be made directly from the solid minerals using the present analytical technique. Despite this, there still remains a problem of both the contamination of non-radiogenic Pb and the secondary loss of the radiogenic-Pb, which were the major source of the resulting age values. To overcome this, prior to the age determination analysis, elemental mapping or distribution feature of all U, Th and Pb isotopes were measured to evaluate the magnitude of the secondary loss or contamination of U, Th and Pb isotopes.

With the LA-ICPMS technique, elemental imaging analysis can be made from fairly large-sized samples (e.g., >20 mm x 20 mm), and thus, the comprehensive information concerning the secondary distribution of the trace elements can be evaluated from whole sample bodies. Combination of elemental imaging and the U-Th-Pb age determination, together with the correction technique for the initial disequilibrium, can provide precise and reliable age data from the carbonatets. The details of the analytical procedure and the correction technique for the initial disequilibrium will be discussed in this presentation.

Keywords: U-Th-Pb dating, Multiple collector-ICPMS, Laser ablation, Elemental Imaging, Earth Genomics

¹国立大学法人京都大学

¹Kyoto University

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-06

会場:104

時間:5月26日17:30-17:45

棘皮動物における遺伝子発現の集団間多様性 Genetic variation of gene expression pattern among echinoderm populations.

和田洋1*

WADA, Hiroshi^{1*}

We compared the gene expression patterns among local populations of Peronella japonica, a species of Japanese sand dollar. We detected significant variation for several genes among populations. I discuss the impact of these findings on the evolutionary history of metazoans.

キーワード: 棘皮動物, ウニ, 地域集団, 遺伝子発現

Keywords: Echinoderm, sea urchin, population, gene expression

¹ 筑波大学生命環境系

¹Graduate School of Life and Environmental Sciences, Univ of Tsukuba

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-P01

会場:コンベンションホール

時間:5月26日18:15-19:30

白亜系双葉層群の炭化小型植物化石の抵抗性高分子分析:結合態アルキル脂質組成 による植物化石の化学分類

Chemotaxonomy of plants by resistant macromolecular analysis in charred mesofossils from the Cretaceous Futaba Group

宮田 遊磨 1*; 沢田 健 1; 池田 慧 1; 中村 英人 1; 高橋 正道 2

MIYATA, Yuma^{1*}; SAWADA, Ken¹; IKEDA, Kei¹; NAKAMURA, Hideto¹; TAKAHASHI, Masamichi²

1 北海道大学大学院理学研究院, 2 新潟大学理学部 自然環境科学科

陸上高等植物の生体組織を構成する抵抗性高分子は微生物分解や続成作用に対して抵抗性があり、植物化石や陸上植物由来の堆積有機物の主要な成分を占めていると考えられている。また、それらの構成モノマーは植物の分類群や生育環境、器官、続成作用などによって特徴的に変化することが知られている。したがって、これらの高分子の分析を行うことで古植物学的な研究のための新たな手法の確立が期待される。しかしながら、特に中生代や古生代のような古い地質時代の堆積物においては、これらの高分子を研究した例は限られている。本研究では、化石高分子の化学分類的な特徴を評価するため、白亜紀の炭質物濃集層から産出した植物化石の分析を行った。

試料は白亜紀コニアシアンの双葉層群芦沢層から産出した炭化した小型化石を用いた。分析した小型化石はHironoia fusiformis やArchaefagacea futabensis を含む被子植物の花および果実の小型化石、裸子植物の種子・シュート・材の小型化石など 16 試料を用い分析を行った。粉末化した試料を有機溶媒で抽出後、残渣を高温 reflux 抽出処理し、さらにその残渣を KOH/メタノールを用いアルカリ加水分解を行った。分解抽出された成分を GC/MS で分析・定量した。また、SPSS を用い多変量解析を行った。植物の部位や種類において似たような脂質組成をもつ化石をグループ化するため階層クラスター分析を行った。

遊離態の抽出成分としてn-アルカン、ステラン、ホパンおよび芳香族炭化水素が主に検出された。芳香族炭化水素はジテルペノイドおよびトリテルペノイドの種々の誘導体が含まれ、一般的に、これらはそれぞれ裸子植物および被子植物の化学分類マーカーとして知られている。しかしながら、裸子植物化石の抽出成分から多量のトリテルペノイドが検出された。これは遊離態の脂質が堆積物中を移動していることを示唆していると考えられ、これらの成分が化石植物の化学分類には不向きであることがわかった。一方、加水分解性成分からは C6-C28 の飽和脂肪酸および C8-C28 のn-アルカノールが主として検出された。それぞれの化石試料におけるこれらのアルカリ加水分解性アルキル脂質の炭素数分布を多変量解析によって詳細に分析した。階層クラスター分析によって、化石種によるアルカリ加水分解性脂質の炭素数分布の違いがみられることが明らかとなった。すべての木質組織の化石は非木質組織の化石を含まない一つのクラスターに分類された。さらに、Juniperusを除けば、被子植物化石と裸子植物化石もそれぞれ別のクラスターに分かれ、分類群によって脂質組成に明瞭な差があることが示された。これらの結果から、エステル結合態のアルキル脂質を含む様々な脂質を網羅的に解析し、総合的に評価することで化石植物の paleolipidomics ともいえる詳細な化学分類的情報が得られる可能性があることを指摘する。

キーワード: 化学分類, アルキル脂質, 植物化石, 白亜紀, 抵抗性高分子, 多変量解析 Keywords: chemotaxonomy, alkyl lipid, plant fossil, Cretaceous, resistant macromolecule, multivariable analysis

¹Faculty of Science, Hokkaido University, ²Faculty of Science, Niigata University

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-P02

会場:コンベンションホール

時間:5月26日18:15-19:30

Foraminiferal psuedopodial observation during chamber formation Foraminiferal psuedopodial observation during chamber formation

TOYOFUKU, Takashi^{1*}; NAGAI, Yukiko¹; Y. MATSUO, Miki¹; OHNO, Yoshikazu²; FUJITA, Kazuhiko² TOYOFUKU, Takashi^{1*}; NAGAI, Yukiko¹; Y. MATSUO, Miki¹; OHNO, Yoshikazu²; FUJITA, Kazuhiko²

Foraminifera, marine unicellular organism, have been considered as one of the major carbonate producer in ocean. Their calcareous tests are broadly utilized as paleo-environmental indicators in various studies of earth science because their tests have been archived as numerous fossil in sediment for long time and various environmental information are brought by population, morphology and geochemical fingerprints. The knowledge about the cytological process on carbonate precipitation has been described for couples of decade using by OM, SEM and TEM. Foraminiferal management of shell formation from ambient seawater are of great interest. Our study shows the potential to understanding the function of psuedopodial network for biomineralization by optical microscope.

キーワード: Foraminifera, Calcification Keywords: Foraminifera, Calcification

¹JAMSTEC, ²University of Ryukyus ¹JAMSTEC, ²University of Ryukyus

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-P03

会場:コンベンションホール

時間:5月26日18:15-19:30

軟体動物の比較解剖学 Comparative anatomy of molluscs

佐々木 猛智 ^{1*} SASAKI, Takenori^{1*}

1 東京大学総合研究博物館

軟体動物はボディプランの多様性によって特徴づけられる。現在生き残っている軟体動物は、(1) 殻の無い虫状の無板類、(2) 8枚の殻板を持ち軟体部に繰り返し構造を示す多板綱、(3) 殻は一枚であるが軟体部には繰り返し構造を持つ単板綱、(4) 殻が左右2枚に分かれた二枚貝綱、(5) 蓋と体のねじれによって定義される腹足綱、(6) 足が腕や触手に変化した頭足類、(7) 前後に牙のように長くなった掘足類、の7つに類型化される体制を示す。化石では現生には見られない構造を示す種が発見されており、それらは進化の途中段階を表していると見なされるか、軟体動物であるか疑問なものも含む。これらの体の構造の成り立ちを理解する上で鍵となるのは器官形成の過程の比較である。さらに、発生段階を制御する遺伝子の研究が必要であり、本セッションの中心課題である地球ゲノム研究へとつながっていく。

キーワード: 比較解剖, 軟体動物

Keywords: comparative anatomy, Mollusca

¹The University Museum, The University of Tokyo

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-P04

会場:コンベンションホール

時間:5月26日18:15-19:30

巻貝における貝殻獲得の遺伝的基盤 Molecular basis of shell formation and shell evolution in gastropods

清水 啓介 1*;遠藤 一佳 2;工藤 哲大 3

SHIMIZU, Keisuke^{1*}; ENDO, Kazuyoshi²; KUDOH, Tetsuhiro³

1京都大学・院理,2東京大学・院理,3エクセター大学

カンブリア紀前期に軟体動物は石灰化した外骨格として貝殻を獲得し、節足動物に次ぐ大きな分類群にまで繁栄してきた。しかし、環境から身を守るために重要な形質である貝殻の獲得を可能とした遺伝的基盤に迫る研究はこれまでにほとんど行われていない。本研究では動物の形態形成に重要なホメオティック遺伝子を制御することで知られるレチノイン酸経路に着目した。カサガイの仲間であるクサイロアオガイ(Nipponacmaea fuscoviridis)のトロコフォア幼生期・ベリジャー幼生期においてレチノイン酸分解酵素である cyp26 の発現解析を行った結果、貝殻腺と外套膜の縁辺部での発現が確認された。さらに、レチノイン酸の機能解析を行なった結果、貝殻腺で発現するホメオティック遺伝子の1つである engrailed の発現が抑制され、貝殻が小さく、石灰化が起こらない表現型が観察された。これらの結果は、レチノイン酸経路が発生初期の形態形成を上流で制御する engrailed を制御することで、軟体動物における貝殻という新奇形質の獲得に重要な役割を果たした可能性を示唆する。

キーワード: 貝殻進化, レチノイン酸経路, 軟体動物 Keywords: Shell evolution, RA pathway, Mollusca

¹University of Kyoto, ²The University of Tokyo, ³University of Exeter

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-P05

会場:コンベンションホール

時間:5月26日18:15-19:30

貝殻の立体らせんをつくる座標系 A possible coordinate system in the 3D coiling of molluscan shells

遠藤 一佳 1*; 新宮 茜 1; 清水 啓介 2

ENDO, Kazuyoshi^{1*}; SHINGU, Akane¹; SHIMIZU, Keisuke²

A vast variety of forms have evolved in the molluscan shells since the Cambrian, all basing on the single and simple rules of growth, or the logarithmic spiral. Yet the biological realities underlying this mathematical regularity remained elusive except that the signal transduction protein Dpp has been demonstrated to be involved at least in the two-dimensional coiling of the shells. Here we show that another signal transduction protein is involved in the shell coiling, based on the results obtained from chemical treatments of the embryos of the pond snail Lymnaea stagnalis. We argue that those two 'morphogens' may form a coordinate system, which grows like a moving frame of the theoretical 'growing tube', enabling the mantle epithelial cells to form secretory three-dimensionally coiled structures.

¹ 東大・理, ² 京大・理

¹Dept. Earth & Planetary Sci., Univ. Tokyo, ²Div. Biol. Sci., Kyoto Univ.

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT26-P06

会場:コンベンションホール

時間:5月26日18:15-19:30

Lymnaea stagnalis の貝殻形成における Wnt の役割 Genetic mechanisms of shell growth and shell coiling

新宮茜 1*;清水 啓介 2;遠藤 一佳 1

SHINGU, Akane^{1*}; SHIMIZU, Keisuke²; ENDO, Kazuyoshi¹

軟体動物の貝殻は炭酸カルシウムで形成されているため化石として残りやすく、地球環境の変遷のプロキシや生物進化 の直接的証拠として研究が続けられている。貝殻形態の進化を明らかにする上では、貝殻の発生や成長に関する知見は欠 かすことができない。巻貝類の貝殻成長については、理論モデルについては様々な研究が進んできたが、実際に貝殻成長 に関わる遺伝子などの生物学的実態については長年解明されておらず、近年になってようやく研究が進められてきた。そ の中の重要な研究として、脊椎動物のbmp2/4の相同遺伝子であるdecapentaolegic (dpp)の転写産物であるDpp分子につい て研究がある。軟体動物では、トロコフォア期に背側に形成される貝殻腺で貝殻形成が開始される。Dpp は貝殻腺で発現 する遺伝子の1つであり、カサガイでは左右対称に、モノアラガイでは左右非対称に発現することが知られており (Iijima et al., 2008)、初期発生時と後期成長時でのdppの発現は貝殻が巻くことに必要で (Shimizu et al., 2011)、Dpp の濃度勾配 も貝殻の螺旋成長について関与している (Shimizu et al., 2013) ことから、dppが貝殻形成について重要な因子の1つである ことが知られている。本研究では、Dppと並んで重要なシグナル伝達因子である Wnt ファミリーに注目した。脊椎動物に おいて、背腹軸形成に関与する Bmp2/4 に対し、直交する前後軸に沿って Wnt の濃度勾配が見られ、Wnt シグナルが形態 形成に重要であることがすでに知られている (Niehrs, 2010)。この Wnt も貝殻形成の制御に何らかの働きをしているので はないかと推測し、検証することを研究目的とした。研究材料として、軟体動物腹足綱有肺類基眼目のLymnaea stagnalis (ヨーロッパモノアラガイ)を用いた。この卵を5つの発生段階(2細胞期・胞胚期・原腸胚期・トロコフォア期・ベリ ジャー期) 毎に、Wnt の阻害剤 inhibitors of Wnt response-1 (IWR-1) と促進剤 6-bro- mumoindirubin-3'-oxime (BIO) を多 様な濃度で使用して機能阻害・促進実験を行い、L. stagnalisの発生過程を観察した。その結果より、L. stagnalisの発生に おいて、Wnt シグナルが阻害され活性化されないと、貝殻形成は正常に起こるものの体内組織の形成が正常に開始され ないことが観察された。また、反対に Wnt シグナルが促進されて活性化されると、殻は正常にまかず、平巻になること が判明した。さらに必要以上に活性化されすぎてしまうと分化がうまくできず、殻を含めた体全体の組織の形成が正常 に起こらなくなかった。以上のことから、Wnt は発生そのものに大きく関与している可能性が高いと考えられる。特に 貝殻形成については、ベリジャー期に促進させた場合に観察できた貝殻形態の違いから、殻が巻く速度と成長していく 速度に対して Wnt シグナルの活性度が重要である可能性が示唆される。

¹ 東大・理, ² 京大・理

¹Faculty of Science, University of Tokyo, ²Graduate School of Science, Kyoto University