Assessment of fault activity by the ESR dating technique

FUKUCHI, Tatsuro¹*

¹University of Yamanashi

After the 2011 off the Pacific coast of Tohoku Earthquake, the definition of active faults, which was described as the faults having moved after 120-130 ka BP in the Advanced Safety Examination Guideline for Seismic Design for Nuclear Power Plant, was modified. As a result, we must evaluate the activity of faults having moved after 400 ka BP. However, it is not easy to evaluate the activity in case of the active faults whose tectonic topography is ambiguous or on which there is no sediment available for dating. Thus, we require a new dating technique for directly estimating the absolute dates of fault movements from fault rocks that preserve the past records of fault movement. The ESR (electron spin resonance) method is a dating technique to estimate the absolute dates of fault movements using ESR signals in minerals (quartz, clay minerals, etc.) forming fault rocks that have been once reset by frictional heating or ESR signals intrinsic to the minerals newly generated by faulting (Fukuchi, 2010).

When we apply the ESR technique to active faults, it is the most serious problem whether or not the ESR signals in fault rocks have been completely reset (Fukuchi, 2004). If the ESR signals have been incompletely reset, the ESR ages obtained from the signals will be older than the actual age (Ta) since the total dose of natural radiation is overestimated. However, the ESR ages (Te) give the theoretical upper limit of the actual age (Ta ≤ Te). Therefore, if the ESR ages obtained give the young ages showing the middle Pleistocene to Holocene, we can utilize the young ages for the assessment of fault activity. Moreover, when deep drill core samples are available for ESR dating, the problem on the complete resetting may be solved. On the other hand, thermally unstable signals that are bleached by light may decay under higher temperature at deeper sites and consequently may give much younger ages even though frictional heat has not been increased. Therefore, caution is necessary in using thermally unstable signals.

Here, I introduce the case of the Shimotsuburai and Hoozan faults in the Itoigawa-Shizuoka Tectonic Line (ISTL) Active Fault System, whose increase of fault activity has been pointed out after the 2011 Earthquake. As a result of ESR dating of black intrusion veins produced by the latest fault movement of the Shimotsuburai fault, which has moved during the Holocene, the Al and Ti centers derived from quartz give 1.3±0.2 Ma (Coefficient of determination: R-value is 99.8%) and 2.0±0.3 Ma (R-value is 99.2%), respectively. Although these centers have been incompletely reset by frictional heating, the age (T) of the Shimotsuburai fault is estimated as T ≤ 1.3±0.2 Ma, from the Al center, the most unstable signal in quartz. On the other hand, as a result of ESR dating of gray gouge produced by the latest fault movement of the Hoozan fault, whose activity during the Quaternary period is unknown, the quartet signals derived from montmorillonite and the Al center derived from quartz give 1.4-1.9±0.2 Ma (R-value: 99.2-99.5%) and 1.2±0.2 Ma (R-value: 99.0%), respectively. In addition, the hyperfine structure (hfs: g=2.0187) of the Al center gives 0.6±0.1 Ma (R-value: 98.8%). Since the whole of the Al center is overlapped with another signal and its ESR age is overestimated, the age (T) of the Hoozan fault may be estimated as T ≤ 0.6±0.1 Ma, from the hfs of the Al center.

References

Keywords: ESR, electron spin resonance, thermochronology, FMR signal, fault rock, Itoigawa-Shizuoka Tectonic Line
What does a "radiometric age" mean?

KANEOKA, Ichiro

1Earthquake Research Insitute, University of Tokyo

In recent years, technical developments in dating methods are remarkable and precision in obtained ages and applicable age range for each method has been much improved.

However, it is not always guaranteed that obtained ages directly correspond to some geological events. To guarantee it, it is necessary to check whether the requirements for each method are satisfied or not. Furthermore, each dating method is based on different principles, which often correspond to different geologic event. However, nowadays many researchers are concerned with the developments in analytical techniques and they do not always pay much attention to check the obtained age values by comparing their required conditions. In this presentation, I will argue for the significance to check the meaning of obtained ages based on their required conditions to represent some geological events by showing some examples (e.g., closure temperature, zircon chronology, isochron).

As a conclusion, I stress the significance to check an obtained age by multiple dating methods and to examine the achievements of conditions required for each dating method.

Keywords: dating, radiometric age, age value, geologic event, required condition, closure temperature
Phengite geochronology of HP-UHP metamorphic rocks: Implication of argon release mechanism during deformation

ITAYA, Tetsumaru1,\#

1Okayama University of Science

A systematic K-Ar age mapping along transects perpendicular to metamorphic thermal gradients have been carried out in the HP schist belts, SW Japan, revealing two contrasting age-T-structure relationships. The Sanbagawa HP schist belt in central Shikoku exhibits a thermal structure that the highest grade rocks occur in the middle part of the apparent stratigraphy and a positive correlation in age-T relationship that the ages are progressively older with increasing metamorphic temperature. The similar age-T-structure relation is observed in the Suo HP schist belt of the Ishigaki area. In contrast, the Sanbagawa HP schist belt in the Kanto Mtns area and the Suo HP schist belt in the Nishiki area, where the thermal structure for the higher grade zone is in the lower part of the apparent stratigraphic succession, display a negative correlation that younger ages are in higher-grade metamorphic rocks.

Why do these age-T-structure relationships appear in the HP schist belts, SW Japan? It is difficult to explain the reason based on the closure temperatures (CT) by the thermally activated diffusion model. CT that has been believed for long time is wrong and must be much higher (ca. 600 C) as revealed by the argon geochronology of the polymetamorphic terrains. This shows the metamorphic sequences mentioned above formed in the temperatures lower than the CT. The HP-UHP schists have been deformed severely during the exhumation of their host rocks and the phengites have experienced the argon release from the phengite crystals by their dynamic recrystallization. The K-Ar ages are related directly to the ductile deformation history of the matrix phengite during exhumation and cooling of the rocks. This suggests that the argon release cease when the ductile deformation of phengites stopped and the K-Ar ages are related to the timing of cease of ductile deformation. This means the phengite (without deformation) included in garnet give a timing of peak metamorphism.

The phengite geochronology of HP-UHP metamorphic rocks in western Alps conducts the following conclusions. Each mica crystal has experienced the different deformation - Ar depletion history during the exhumation of the host rocks and the portions within a crystal have the different history. This phenomenon may be more distinct in the rocks that have experienced the limited deformation history. K-Ar ages of the mica separates from the rocks indicate the average values of the ages from each crystal. To justify this Ar release mechanism requires further investigation using UV laser probe in-situ Ar-Ar analyses of micro-domains in phengite crystal with high sensitive noble gas mass spectrometer.

Keywords: HP-UHP metamorphic rocks, phengite geochronology, deformation, argon release mechanism, closure temperature
Unspiked K-Ar dating for the central part of Kuju volcano, Kyushu, Japan

YAMASAKI, Seiko1*; HOSHIZUMI, Hideo1; MATSUMOTO, Akikazu1

1GSJ, AIST

Unspiked K-Ar dating method enables mass fractionation correction of initial 40Ar/36Ar ratio, and has been successfully applied to young lava samples, especially younger than 0.5 Ma. We measured unspiked K-Ar ages for lava samples corrected from Ogigahana, Nakadake, Mimatayama volcanoes, the central part of Kuju volcano, Kyushu, Japan. The volcanic bodies in central Kuju volcano are regarded to have formed after Handa pyroclastic flow eruption in ca. 54 ka. However, the detailed geochronological study had not been conducted because their ages are considered to be younger than the measurement limit by conventional K-Ar dating method.

New ages for the lava on south Ogigahana Volcano is 34±3 (1σ) ka, agree with the reported TL ages (34-37 ka; Okuno et al., 2013) and the stratigraphy. The sample from the lower unit yield 65±8 ka, similar age with the TL ages for the summit of the volcano and adjacent Iwaidake volcano (60-70 ka; Okuno et al., 2013).

The age for the lava from Inaboshi Yama, a part of Nakadake volcano, is 46±12 ka, showing it formed soon after Handa pyroclastic flow eruption.

We measured also the essential rock in Matsunodai Debris Abaranche Deposit, probably originated from Mimatayama volcano. The obtained age is 36±12 ka, in agreement with the 14C age of ca. 20ka in its error.

These results show that a several volcanic bodies were formed in ca.54-30 ka in the central part of Kuju volcano.

Keywords: Kuju volcano, K-Ar dating, Unspiked method
Validation of X-ray interference correction methods in EPMA-CHIME dating

KATO, Takenori1*; CHO, Deyng-lyong2; JEEN, Mi-jung3

1Center for Chronological Research, Nagoya University, 2Geological Mapping Department, Korea Institute of Geoscience and Mineral Resources, 3Center for Research Facilities, Pusan National University

The CHIME dating method provides micro-volume non-destructive U-Th-Pb dating based on quantitative electron probe microanalysis (EPMA). X-ray interference is a significant problem for the accuracy of the EPMA-CHIME dating. X-ray interferences are generally corrected using (1) peak-separation technique, (2) X-ray intensity based method\cite{1}, or (2) chemical composition based method\cite{2}. X-ray interferences by Th and Y are validated using synthetic standard materials. X-ray intensity based correction highly depends on chosen standard materials in the determination of correction factors. On the contrary, the chemical composition based method is less sensitive to chosen standard materials.

\cite{1} Amli & Griffin, W.L. (1975) Amer. Mineral., 60, 599.

Keywords: CHIME dating, X-ray interference correction, electron probe microanalysis (EPMA), quantitative analysis
LA-ICP-MS U-Pb dating using non-polished zircons: Can we read magma residence time?

ITO, Hisatoshi

1 Central Research Institute of Electric Power Industry

It is well-known that in dating zircon by U-Pb method, LA-ICP-MS is inferior to TIMS in precision and to SIMS in spatial resolution. However, the LA-ICP-MS method usually drills zircons to $\sim20\ \mu m$ in a single analysis ($\sim2\ \mu m$ for SIMS). This can be an advantage over TIMS and SIMS in that it can obtain age information from the surface to the core of zircons. Especially, the method can elucidate zircon crystallization time from beginning to end by using non-polished zircons. Meanwhile it should be mentioned that in LA-ICP-MS $^{206}\text{Pb}/^{238}\text{U}$ ratio increases as analysis time (as zircons are drilled deeper), known as down-hole fractionation. Here I took this into consideration and still found that the Fish Canyon Tuff, the largest known silicic eruption on Earth, has a magma residence time of more than 1 m.y., not less than 0.4 m.y. as assumed in literatures, and demonstrate the usefulness of non-polished zircon LA-ICP-MS U-Pb dating.

Keywords: U-Pb dating, zircon, LA-ICP-MS, magma residence time, Fish Canyon Tuff
Investigation of martian surface history: NanoSIMS analyses of D/H ratios and U-Pb chronology of martian meteorites

KOIKE, Mizuho1; SANO, Yuji1; TAKAHATA, Naoto1; ISHIDA, Akizumi1; SUGIURA, Naoji2; ANAND, Mahesh3

1Atmosphere and Ocean Research Institute, University of Tokyo, 2Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 3Department of Physical Sciences, The Open University, UK

Introduction: Water is an important volatile for environments of terrestrial planets as well as their habitability. A number of recent studies have identified strong evidence for liquid water on past Mars, such as clay minerals and fluvial geomorphological features (e.g. [1][2]), whereas a comprehensive history of the martian environment remains complicated. The isotopic compositions of hydrogen (D/H) of present martian atmosphere is highly elevated (>5 times that of terrestrial water; [3]), which results from the extensive atmospheric escape. Martian meteorites are useful as they potentially provide valuable records including D/H of the past surface water and the mantle primitive water (e.g. [4][5][6][7][8]). However, due to their complicated history on Mars, it is challenging to understand their isotopic records accurately. Phosphates are helpful, for they can preserve both U-Pb chronology and D/H information. Here, we report D/H ratios and U-Pb ages of phosphates in two martian meteorites; an ancient orthopyroxenite, ALH 84001 (ALH), and a young enriched shergottite, LAR 06319 (LAR). In addition, we have also measured D/H ratio of melt-inclusion glass (MIs) in LAR.

Analytical methods: For ALH, 3 merrillite grains with known U-Pb ages [9] were selected for D/H analyses. For LAR, several phosphate grains and MIs were found in a thin section, using a SEM-EDS. Both U-Pb and D/H analyses were carried out using a NanoSIMS 50 installed at AORI, Univ. of Tokyo. Before SIMS analyses, the samples were baked at ~100 °C in a SIMS air-lock overnight before/after gold coating to remove adsorbed water. The analytical methods of U-Pb dating were the same as the previous study [9]. The D/H analyses were conducted on the phosphates in ALH and LAR and MIs in LAR. A Cs+ primary ion beams with 200pA/1nA was used for phosphates and MIs, respectively. An electron gun was used for charge compensation. Negative secondary ions of $^{1}\text{H}^-$, $^{2}\text{D}^-$, $^{12}\text{C}^-$ and $^{18}\text{O}^-$ were collected. A natural terrestrial apatite from Morocco and NIST SRM 610 were used as standards. To avoid terrestrial H contamination, most of which are background H in the analysis chamber and hydrocarbon in the sample cracks, careful analytical protocols following a previous study [7] were conducted.

Results & Discussion: The δD values of ALH merrillite varied from -300 to 1970 ‰ (Fig). The obtained highest value is similar to those of ALH carbonates and maskelynite [4]. The U-Pb age of the same grains, 3990Ma, can be interpreted as an impact-induced reset age [9]. It is likely that their D/H ratios reflect 3990Ma surface water, incorporated during the impact and/or a later hydrous metamorphism. The high D/H mainly supports a previously proposed two-stage evolution [5]. On the other hand, phosphates in LAR yielded a total Pb/U age as 167+/-57 Ma. This is consistent with other radiometric ages within uncertainty, suggesting the U-Pb system in the phosphates has been preserved since crystallization of the host rock. δD values of LAR apatite, merrillite and MIs were 3340-4380 ‰, 1070-5260 ‰ and 1150-6830 ‰, respectively (Fig). The D/H may have mineral trends: MIs > merrillite > apatite. A similar trend was reported previously [7]. While apatite possibly recorded the magmatic water at the timing of crystallization, MIs might have incorporated water from another reservoir with extremely high D/H ratios.

Keywords: martian meteorites, NanoSIMS, D/H ratios, U-Pb dating, phosphates, melt-inclusions
Application of oxygen isotopic dendrochronology to Earth Science: Its potentials and challenges

NAKATSUKA, Takeshi

1Research Institute for Humanity and Nature

<Introduction>

Dendrochronology has been mainly used in archaeology, but also applied to Earth Science, such as dating of past earthquake and volcanic eruption by analyzing of woods excavated from landslide or pyroclastic layers. However, there are several challenges in previous dendrochronology. (1) It is necessary to establish regional standard ring width chronology (master chronology) as long as possible for dating of woods from various periods. (2) Because climate sensitivity of tree-ring width depends on tree species, it is necessary to make master chronology for each species separately. (3) To fix accurate years of geological events, it is necessary to analyze buried woods with bark. In this presentation, I will show how oxygen isotope ratios in tree-ring cellulose can solve those challenges for applying dendrochronology to Earth Science.

<Problems in Traditional Dendrochronology>

There are several difficulties in traditional ring width dendrochronology. (1) Although there are some very long ring width chronologies of more than 10,000 years in the world, they are usually established in cold regions where ice sheet covered in glacial periods, so that it is impossible to extend the chronology beyond last glacial maximum. In Japan, woods can be often excavated in glacial layers, but ecological disturbance to tree-ring width owing to the high tree density in Japanese forest usually makes it difficult to cross-date old excavated logs so that longest ring width chronology in Japan is limited to about 3,000 years made of conifer only. (2) Most wood samples of various hardwoods cannot be dated by traditional dendrochronology in Japan because there are not tree-ring width chronologies made of hardwood. (3) Small logs with barks cannot be dated by comparison of ring width time-series due to less statistical reliability owing to small ring numbers.

<Characteristics of oxygen isotopic dendrochronology>

Recently developed oxygen isotopic dendrochronology has following advantages and disadvantages. One of disadvantages is that it is much more time-consuming and labor intensive to measure tree-ring oxygen isotope ratios than tree-ring width. Another disadvantage is that it cannot be applied to highly degraded wood which has lost cellulose by microbial decomposition in sediment. The latter problem limits the applicability of oxygen isotopic dendrochronology to many geological and archaeological samples. On the other hand, there are several merits. Because tree-ring cellulose oxygen isotopic ratio reflects only two meteorological parameters (precipitation isotope ratios and relative humidity during growing season), its inter-annual time-series coincides very well with that in different trees of different species. Besides, its inter-annual variation correlates well with summer precipitation, making good paleo-precipitation proxy. Moreover, records on seasonal precipitation can be reconstructed by slicing of year ring and analyzing oxygen isotope ratios.

<Applicability of oxygen isotope dendrochronology to Earth Science>

By utilizing those merits of tree-ring cellulose oxygen isotope ratios, three challenges mentioned above can be solved as follows. (1) The high correlation of oxygen isotope ratio time-series between different tree individuals makes it possible to cross-date several millennia old excavated logs precisely (now the oxygen isotopic chronology has extended to 4300 years ago in Japan), so that systematic excavation of old logs may establish very long tree-ring chronology over last glacial maximum soon in Japan. (2) Because of its universality over tree-species, various wood samples in sediment layers, indicating of past earthquake and/or volcanic events, can be dated by oxygen isotope dendrochronology. (3) In combination with radiocarbon measurement, small log with bark, which has only 5-10 year rings, can be dated by referring database of intra-ring oxygen isotope ratios in the near future.

Keywords: tree ring, cellulose, oxygen isotope ratio, dendrochronology
Re-evaluation of ABA treatment for 14C dating of charcoal from the Late Holocene layer

ATSUMI, Shin

1Tokyo university of science, Graduate School of Chemical Sciences and Technology

Radiocarbon (14C) dating has been used in field of geology and archaeology. Especially, in archaeology, high resolution and high accuracy dating is required. It had been suspected and had been tried to clarify the effect of the contamination by exterior organic matter on the 14C date from the beginning of development of radiocarbon dating. There exists no research with the objective method for the effect of residual external organic carbon after pretreatment on the 14C date. Thus, the discussion on what is reasonable and reliable sample in the 14C dating method and the discussion on the most suitable chemical treatment condition are still left unsettled. Moreover, there exists no reliable chemical method to distinguish external organic matter and humificated charcoal of sample charcoal. But we know empirically that charcoal’s characteristics to resist against NaOH solution are different by burial and preserved states. Therefore, many researchers are using NaOH solution of low concentration when charcoal’s characteristics to resist against NaOH are weak. The problem on the conventional ABA method is that what degree of concentration of NaOH solution is the most effective to the 14C dating samples. There exists no consensus on the problem. Here, we require the adequate condition of sample and the adequate pretreatment condition to obtain reliable 14C dates. However, as far as we know, there exist few data and researches on conditions of ABA pretreatment. In the present research, we try 5 steps pretreatment using alkaline solution increasing concentrations stepwise in order to search the optimum condition of alkaline treatment stage of ABA method. We make comparisons by the 14C dates among residual charcoal of the individual pretreatment stages, and compare emission intensity of dissolved organic matter and absorbance of the extracted solutions of the individual pretreatment steps. Namely, the present research aims to clarify the problem of ABA method and its practical solutions. According to results of present research, we recommend 5 step-alkaline treatment by 5 concentrations (0.001, 0.01, 0.1, 1.0, 1.2 mol/L) of NaOH solution for charcoal treatment. This time, we discuss systematically about problems of the 14C dating.

Keywords: Radiocarbon dating, Late Holocene, ABA method, Humic acid, 3D-Fluorescence spectroscopy
U-Pb dating of zircons and measurement of organic carbon isotope in the sedimentary rocks from the BGB

HARADA, Takuya1* ; KIYOKAWA, Shoichi1 ; MIKI, Tsubasa1 ; TERAJI, Shuhei1 ; TSUTSUMI, Yukiyasu2 ; IKEHARA, Minoru3

1Department of Earth and Planetary Sciences, Kyushu University, 2National Science Museum, 3Center for Advanced Marine Core Research, Kochi University

The Swaziland Supergroup comprises three Groups; a lower, the Onverwacht Group; a middle, the Fig Tree Group; and upper, the Moodies Group. The target of this study is the Fig Tree Group which comprises interstratified terrigenous clastic units and dacitic to rhyodacitic volcanic rocks. These strata seem to have two formation-level units; the Mapepe and Auber Villiers Formations. The Mapepe formation includes about 700m of shale, chert-grit sandstone, and chert-clast conglomerate interstratified with fine-grained felsic pyroclastic and volcaniclastic rocks. It is thought that deposition took place in alluvial, fan-delta, and shallow to moderately deep subaqueous environments. This work have conducted the stratigraphy of the Mapepe formation by making detailed column, measuring magnetic susceptibility, dating U-Pb abundance ratio of zircons, and dating stable carbon isotope ratios of organic carbon in the sedimentary rocks from the study area. The purpose of this study is to estimate a sedimentation environment of the Mapepe formation through the use of diverse ways.

U-Pb dating of zircon is the most prevailing method of determining the depositional ages from the sedimentary rocks of Archean-Proterozoic in which the biostratigraphy has not been established. We collected 7 redsandstone samples from the Mapepe Formation and 5 intrusive ones from the Onverwacht Group, and were able to obtain zircon from only 1 sample each. U-Pb measurements of Zircons were conducted by LA-ICP-MS installed at the National Science Museum.

We measured two zircons; from the Mapepe Formation redsandstone and the Onverwacht Group intrusive rock. Zircons from the Mapepe Formation has 29 concordant ages and a peak in age about 2954±9Ma~3546±13Ma. There are more than a few zircons younger than this age, and it is considered that there are two possibilities; the zircons reflect the depositional age of the area, and a possibility of Pb defect. In any case, these data are in contradiction with the previous research (Lowe D. R. et al., 1999), so that has quite a bit of room for improvement such as increasing the number of measured zircons to discuss statistically. Zircons from the Onverwacht Group has 6 concordant ages and indicates 3270±14Ma. This data is consistent with the previous research (Lowe D. R. et al., 1999)

Green shale from the Mapepe formation showed at an average of 0.72wt% of amount of organic carbon. Black shale, green shale, and jasper from the Mapepe formation showed between -30.6˜-20.3 \(^{\circ}\), which suggests a kind of possibility of biological activities.

Keywords: U-Pb Dating of Zircons, Measurement of Organic Carbon Isotope, Barberton Greenstone Belt
D/H and Sr isotopic ratios of apatite inclusions from Archaean zircons to study Earth’s evolution

ISHIDA, Akizumi1*; TAKAHATA, Naoto1; SANO, Yuji1; DAVID, Jean2; PINTI, Daniele2

1 AORI Univ. Tokyo, 2Universite du Quebec a Montreal

Isotopes of volatile elements H and S, and those of incompatible element Sr, presented in Archaean rocks can give unique information to understand the evolution of the Earth’s interior and the state of its surface. Apatite or glass inclusions contain hydrogen, halogen, and strontium as major or minor element. When they are encapsulated in metamorphic-resistant zircon crystals, it is expected that the pristine isotopic information of these elements might be preserved. However, apatite inclusions are usually less than a hundred micrometers in diameter, which require the use of high-sensitive and high-resolution analytical methods for measuring isotopic abundances. Furthermore, discriminating between pristine compositions and later alteration is problematic. We are trying to approach these issues by using a NanoSIMS50 at University of Tokyo.

U-Pb dating using NanoSIMS50 has been carried out on zircon crystals separated from tonalitic gneisses of the Eoarchaean Nuvvuagittuq supracrustal belt, Superior province, Canada. The estimated age, 3638±19Ma, using NanoSIMS50 is consistent with previous reported age of 3661±4Ma, using LA-MC-ICP-MS. Some zircons show discordant ages suggesting that a certain amount of Pb was lost by a thermal alteration event at 980±330Ma. We excluded such discordant zircon crystals because the isotopic composition of H and Sr could have been also altered by this thermal event.

Measurements have been made by peak jumping analysis using single collector with Cs+ primary ion beam. H and D were collected for hydrogen isotopic analyses, and 86Sr, 87Sr, and 88Sr were collected for strontium isotopic analyses.

Obtained D/H ratios from 7 apatites suggest that δD values range from -223 to +54‰ (vs. SMOW). Considering the correlation between measured D/H and O/H ratios, it turned out that these values were affected by contamination with a D-poor, H-rich component. As a result, +17±40‰ was estimated as the D/H true value for these apatite inclusions. This value is heavier than that of reported one by Pope et al (2012) which estimated the hydrogen isotopic ratio of Archaean sea water as -25‰ targeting hydrogen contained in serpentine from ca. 3700 Ma Isua supra crustal belt.

Keywords: apatite, U-Pb dating, hydrogen isotopic ratio, strontium isotopic ratio, Archaean
Geodynamic cycles of sulfur, carbon and nitrogen

KAGOSHIMA, Takanori1*; SANO, Yūji1

1Atmosphere and Ocean Research Institute, University of Tokyo

Sulfur has important roles not only in biological activities but in industry and medicine. However, its geochemical cycle between the mantle and the surface environments has not been well quantified. 3He, one of the primordial noble gas isotopes, is useful to investigate to evaluate S cycles. 3He fluxes from the mantle to atmosphere and ocean are well constrained, which enables us to use this isotope to estimate other volatile fluxes. The recent study reported S and C fluxes from the mantle to the surface environments based on He, S, and C isotopic compositions in MORB, hydrothermal fluids, and volcanic gases [1]. The fluxes were estimated with the recently reported 3He flux at ridges, 530 mol/yr [2]. The S/3He ratio at MOR was calculated to be 1.9x108 as an average of S/3He ratios in six MORB vesicles (13N, 17S on EPR; 15N, 37N on MAR; 24S-25S on CIR) and 10 high temperature (>200 °C) hydrothermal fluids (11N-47N, 17S-19S on EPR; 23N-38N on MAR). Multiplying this ratio and the 3He flux together, S flux at ridges was estimated to be 100 Gmol/yr. An average S/3He ratio of 15 high temperature (>200 °C) volcanic gases collected from circum-Pacific regions was calculated to be 6.5x109, providing S flux of 720 Gmol/yr from arc volcanoes calibrating against 3He flux of 110 mol/yr determined by its MOR flux. This flux is higher than that from ridges. However, S in volcanic gases does not originate only from the mantle. S/3He ratios and \(\delta^{34}\)S values in volcanic gases can be explained by mixing of three components: the upper mantle; subducted sedimentary pyrite; and subducted sulphate. The S contribution from the upper mantle was calculated to be 2.9% in volcanic gases, providing 21 Gmol/yr from the mantle at arcs, which is lower than the S flux at ridges. Carbon flux at ridges was calculated to be 1200 Gmol/yr using the 12CO\textsubscript{2}/3He ratio of 2.2x109 [3] based on compositions of MORB and hydrothermal fluids. An average 12CO\textsubscript{2}/3He ratio of 24 high temperature (>200 °C) volcanic gases collected from circum-Pacific regions was calculated to be 2.0x1010, providing C flux of 2200 Gmol/yr from arc volcanoes. 12CO\textsubscript{2}/3He ratios and \(\delta^{13}\)C values in volcanic gases can be explained by mixing of three components: the upper mantle; subducted organic sediments; and subducted limestone with slab [4]. The C contribution from the upper mantle was calculated to be 11% in volcanic gases, providing 240 Gmol/yr from the mantle at arcs. The S and C fluxes from the mantle to atmosphere and ocean are 121 Gmol/yr and 1440 Gmol/yr, respectively. The C/S flux ratio was calculated to be 12, which is comparable to the surface inventory ratio of 13 [5]. This suggests that the main source of surface S and C is the upper mantle. Assuming steady-state surface environments, subducted amounts of S and C become 820 Gmol/yr and 3400 Gmol/yr, respectively. Then 15% of subducted S and 42% of subducted C do not return to the surface environments and recycle back into the depth. Nitrogen cycles will also be quantified and discussed in the current study.

Keywords: sulfur flux, carbon flux, nitrogen flux, mid-ocean ridge basalt, hydrothermal fluid, volcanic gas
Chehmit area is one of the four exposed Neoproterozoic inliers in northern Ethiopia, which consists of both Tsaliet and Tambien Group rocks. The metavolcanics, metavolcanoclastics and phyllite rocks exposed in the area represent the Tsaliet Group whereas the mixed clastic-carbonate metasedimentary rocks constitute the Tambien Group deposited ∼800-740 Ma ago. An integrated structural, petrological and carbon and oxygen isotope study has been carried out to understand the deformation, metamorphic and Neoproterozoic history of the area. Field structural data demonstrate that there are at least three phases of deformations. Earliest deformation produced minor, steep tight folds and N-S trending, pervasive regional foliation; followed by the formation of major upright folds, and latest brittle structures. Petrographic study of rock samples from the area shows predominantly lower green schist facies metamorphism coeval with the earliest phase of deformation. Stable C and O isotope analysis of the carbonates is also carried out to evaluate chemostratigraphy. The limestone unit contains anomalous C-isotope depositional signature which, together with lithological features, enabled local and global correlations with other Neoproterozoic formations. The δ^{13}C values of the limestone in Chehmit range from -5.79‰ to -1.99‰ with an average value of -3.80‰ whereas the value of δ^{18}O ranges from -7.119‰ to -14.164‰ with an average value of -11.300‰. Although negative carbon isotope excursion in Neoproterozoic era is often related to snowball earth conditions, no glaciation features and erosion surfaces are observed in this unit. Thus the negative C-isotope excursion is, instead, correlated with the Bitter Springs Stage anomaly (found in Australia and Svalbard) which is considered to be the result of inertial interchange true polar wandering. The δ^{13}C values obtained from the Chehmit limestone indicate a match with the top most excursion of the Bitter Springs anomaly. Radiometric dating and paleomagnetic studies of the rocks of the Chehmit area can be useful to further support this hypothesis.

Keywords: Tambien Group, chehmit area, carbonates, Neoproterozoic, Bitter spring stage, True polar wandering
Observation of alpha recoil tracks in zircon: An attempt

HASEBE, Noriko\(^1\)\(^\ast\); KOZAKA, Ayumi\(^1\); ITO, Kentaro\(^1\); FUKUMA, Takeshi\(^1\); MATSUKI, Atsushi\(^1\)

\(^1\)Kanazawa University

The decay of heavy nuclrei leaves damage in crystal; fission tracks (FT) or alpha recoil tracks (ART). ART is smaller in size compare to FT, thus only applied to layered silicates. If ART can be observed in zircon, which in general has higher uranium concentration than layered silicate, we can date samples whose ages are in order of thousand years old or older.

When zircon with high track density (e.g., >30 tracks/10\(^{\text{-6}}\)cm\(^2\)) was observed, many small pits with the depth less than 20 nm were found together with fission tracks. Fission tracks show deeper depths of \(\sim 50\) nm when the sample was readily etched and can be reasonably distinguished from other topographic lows. In the observation of young zircons collected from modern volcanic product, dynamic range of surface topography is less than 5 nm after the etching of 10 hrs. Many surface shallow etch pits with the depth of \(\sim 20\) nm found in old zircons do not exit. Occasionally a hole with the depth of ca. 10 nm was found on the smooth surface. Because these zircons are from modern volcano and existence of a fission track is less plausible, these countable holes may be alpha recoil tracks. The depth of these holes is concordant with the shallow pits found in old zircon. Therefore, these shallow pits may also be alpha recoil tracks.

To see the behavior of shallow pits in old zircon, zircon was annealed at 600 degrees C or 1000 degrees C and observed. The surface topography have not changed much and 10\(^{\text{-15}}\)nm pits were still preserved in the sample after 600 degrees C annealing. After 1000 degrees C annealing, the surface topography become a little flat, and as smooth as modern zircon.

Keywords: radiation damage, atomic force microscope, alpha recoil track, fission track, zircon
Attempts to date slip event of crush zones associated with plastic deformations of biotite based on FT thermochronology

SUEOKA, Shigeru; SHIMADA, Koji; ISHIMARU, Tsuneari; NIWA, Masakazu; YASUE, Ken-ichi; UMEDA, Koji; DANHARA, Tohru; IWANO, Hideki

1 Japan Atomic Energy Agency, 2 Kyoto Fission-Track Co., Ltd.

Timings of fault slips are generally constrained by dating displaced geomorphic markers, e.g., terrace surfaces, alluvial deposits, and artificial structures. However, these markers are not always available. Therefore, direct dating of fault materials have been also attempted to determine ages of faulting events; for instance, detecting chronological anomalies derived from frictional heating or crushing (e.g., Ikeya et al., 1982, Science; Murakami and Tagami, 2004, GRL; Yamada et al., 2013, JAES; Ganzawa et al., 2013, JGSJ) and dating hydrothermal veins or clay minerals formed after faulting (e.g., Zwingmann et al., 2004, JSG; Watanabe et al., 2008, Geochim J.; Siebel et al., 2009, IES; Yamasaki et al., 2013, Chem. Geol.) were performed (Tagami, 2012, Tectonophys.). However, definitive procedures to determine faulting ages based on such geochronological methods have not been established because thermogenesis and mass transport along fault zones are not simple. More fundamental and case studies are desirable to improve these methods.

We introduce an attempt to date a crush zone associated with plastic deformation of biotite on the basis of fission-track thermochronology. The crush zone is observed in granitic basement rocks and is distributed in the Monju prototype fast breeder reactor site, northwestern part of the Tsuruga peninsula, southwest Japan. The original topography and covering layers were excavated and removed during the construction of the Monju. Crush zones observed in the site are generally shorter than several tens meters and the width is less than several centimeters, producing net-work structures associated with ductile deformations. Along the crush zones, plastically deformed biotite grains are generally observed, which implies the crush zones were slipped under the temperature higher than 150-250 deg. C (e.g., Lin et al., 1999, Tectonophys.; Passchier & Trouw, 2005, “Microtectonics 2nd ed”). The Tsuruga body of the Kojaku Granite, host rock of the crush zones, intruded at the end of the Cretaceous, cooled down to the ambient temperature within a few million years, and has been free from regional scale secondary heating (Sueoka et al., submitting). By contrast, local heating, such as basaltic intrusions at ~19 Ma, may have occurred around the crush zones. In this study, we are performing fission-track thermochronometric studies for the crush zones, aiming to determine the timing of fault slips occurred at >150-250 deg. C. Although it is generally known that apatite fission-tracks are annealed at 90-120 deg. C for 10^6-10^7 years, even shorter-term heating, e.g., for several hours to several years of heating, can anneal apatite fission-tracks at >200 deg. C (e.g., Laslett et al., 1987, Chem. Geol.). This temperature range agrees with the temperature at which biotite is plastically deformed. In this presentation, we are going to report the preliminary results of fission-track analyses.

Keywords: fission-track thermochronology, dating of crush zones, plastic deformation of biotite, Kojaku Granite
Effects of physical aging degradation on OSL properties of quartz

OSADA, Akira1* ; YAMANAKA, Chihiro1 ; TAKADA, Masashi2

1Department of Earth and Space Science, Osaka University, 2Department of History, Sociology and Geography, Faculty of Letters, Nara Women’s University

Optically stimulated luminescence (OSL) using radiation-induced centers has been used for the dating of Quaternary samples. Although the principle is quite similar to that of ESR dating, clear difference exists between them. In OSL dating, luminescence centers easily bleached by light are investigated. Therefore, OSL is used to determine buried ages of samples after resetting OSL signal by exposure to the sunlight. In ESR dating, on the other hand, radiation centers with unpaired electrons are considered. For the ESR centers, usual light bleaching does not affect much but thermal annealing at several hundreds degree in Celsius affects to the centers in spite of higher stimulating energy of photon than temperature.

Usually, intensity of OSL from a natural sample shows sample-dependence between particles or aliquots. Therefore, a signal regenerating method for the same sample is widely used, which means repeated OSL measurements to the same sample with giving a different dose of γ or β irradiation. Such sample dependence would be attributed to the imperceptible difference of impurities or defects of crystals, but are not fully understood. It is known that quartz from old sediment or from a geological fault shows an intense OSL and specifically shows a quick response for weaker stimulating light known as ‘the fast component’ of OSL. However, quartz from igneous rocks does not show such fast component OSL[1]. Considering these facts, we can assume weathering of materials causes such enhancement of OSL sensitivity.

In this study, we have performed mechanical crushing and α-irradiation on quartz of reagent grade in order to simulate the effects of weathering on the OSL properties. Quartz powder with the grain size of 149-250 μm obtained after the ball-mill operation of 0.5 to 2 hours were used for OSL measurements. Also, α-irradiation at 1.3, 5.5, and 63kGy for powdered quartz was performed at the energy of 1.8MeV. OSL was measured with Riso TL/OSL reader DA-20 at β-irradiation of 50 Gy.

Also, we have performed annealing on quartz samples from Ayers Rock and Thar Desert for the purpose of knowing OSL characteristic of natural samples that are sensitive, and reagent quartz doped 0.01mol% lithium in addition to the above reagent samples. These samples were annealed 300$^\text{\degree}$ to 800$^\text{\degree}$ for an hour in steps of 100$^\text{\degree}$.

As a result, the OSL intensity increased with the crushing time. It is considerable that mechanical crushing leads the precursors of OSL centers, although we did not observe the fast component of OSL through this experiment. It is interesting that the α-irradiated quartz samples indicated crucially higher intensity. Considering the range of α-particles, defects near the surface of sample should contribute to the increase of the OSL Intensity.

Reagent samples that annealed from 500 $^\text{\degree}$ to 800 $^\text{\degree}$ showed an increase of OSL intensity up to ten times of non-annealed samples, and the trend is more remarkable for ball-milled and α-ray irradiated samples. However, the reagent sample doped with lithium showed a decrease of OSL intensity. The Ayers Rock sample didn’t showed any clear change of OSL intensity, but Thar-Desert sample showed twenty times of increase of OSL intensity. In addition, we have observed five times of increase for natural samples in the fraction of the fast component to the total intensity. These results indicate that the electrons that are detrapped by annealing are strongly related to OSL mechanism, and the thermal stability is different among the centers related to the fast component, the slow component and the centers that quench OSL.

Reference

Keywords: Luminescence dating, Optically Stimulated Luminescence, Quartz
High precision and high sensitive stable isotopic analysis by using original CF/DI-IRMS system for IsoPrime100

NAKANE, Masaharu; TANAKA, Takashi; TETSU, Tomomi; TAKAGI, Haruka; ISHIMURA, Toyoho

1National Institute of Technology, Ibaraki College, 2Waseda University

The stable carbon and oxygen isotopic compositions ($\delta^{13}C$ and $\delta^{18}O$) of calcium carbonate, especially biogenic calcite, are used for environmental analysis (e.g. reconstruction of paleo-seawater temperature). The measurement of $\delta^{13}C$ and $\delta^{18}O$ of calcium carbonate is performed based on the comparison between the $\delta^{13}C$ and $\delta^{18}O$ of international standard calcite. Through the analysis, the isotopic values of samples should be determined precisely in order to compare and discuss with the analytical results reported in previous studies. In this study, we have developed a sample preparation system for IRMS (isotope ratio mass spectrometer) for high precision and high sensitive analysis. As a result, analytical results of NBS-19 (international standard calcite) using the developed system with dual-inlet IsoPrime100 (IRMS) showed $\delta^{13}C=+1.95 +/-0.026$ $\%$ and $\delta^{18}O=-2.20 +/-0.056$ $\%$ in long-term external analytical precision ($n=36$). Moreover, we found that short-term external precision (within a day) for this system have achieved around +/-0.01 $\%$. By using the developed system with continuous-flow IsoPrime100 (IRMS), we can determine $\delta^{13}C$ and $\delta^{18}O$ of calcite and seawater (as low as 0.1 microgram of CaCO$_3$; 1 nmol of CO$_2$) with standard deviations of +/-0.1 $\%$.

Keywords: High precision, stable isotopic analysis, carbon and oxygen isotope, carbonate, development
High-resolution stable isotopic analysis of CaCO3 to clarify the life history recorded in fish otolith

TETSU, Tomomi1; ISHIMURA, Toyoho1*; ODA, Masanori2; SAKAI, Saburo3

1National Institute of Technology, Ibaraki College, 2Tottori Prefectural Fisheries Experimental Station, 3JAMSTEC

Japanese sardine is one of the important fish resources in Japan because they are utilized in our food, and used as fish meal. To keep these natural fish resources, we need to understand the life cycle of fishes. In recent years, previous studies reported that the stable isotopic records in otolith of fish reflect the ecology of their live. In this study, we analyze the stable isotopic composition of otolith of Japanese sardine in high resolution (=microscale: <100micrometer) to detect the environmental changes recorded in each growth stage of otolith. To realize the high-resolution microscale-analysis, we employed Geomill326 to mill otolith in microscale, and the microscale isotopic analytical system (MICAL3c) to determine isotopic compositions of small amounts of milled samples. As a result, we found that the stable isotopic composition in the center of otolith has different isotopic value with the outer edge of otolith. Especially, the seawater temperature calculated from stable oxygen isotope ratio in the outer edge of otolith is comparable with the water temperature at the time they captured. In addition, we successfully detect the life history of fish for each growth stages in high resolution. This demonstrated work is the first collaboration between Geomill326 and MICAL3c.

Keywords: otolith, stable isotope, microscale analysis, high resolution, environmental proxy, carbonate
An attempt to obtain earthquake-related events from stalactite

KAWABATA, Kuniyo1; KUBOTA, Yoshimi2; TANAKA, Hidemi3; TSUNOMORI, Fumiaki4

1The Kagoshima University Museum, 2National museum of nature and science, 3School of Science, The University of Tokyo, 4Geochemical Research Center, Graduate School of Science, University of Tokyo

Dripstones in limestone cave such as stalactites and stalagmites showing colored banding are thought to record some kind of change in the process of their growth. In many cases, dripstones have been studied for the purpose of revealing paleoenvironmental change. Their growth is directly affected by groundwater recharge passing through cracks. The open states of the cracks are easily modified by tectonic deformation such as earthquake. Growing dripstones, therefore, record not only paleoenvironmental change, but possibly also tectonic event. Here we try to detect an event caused by tectonic deformation by analyzing stalactite having banding texture.

We got stalactites from Kuzuu district in Tochigi prefecture and stalagmites from Ishigaki Island in Okinawa prefecture. We observed banding texture under microscope, analyzed chemical composition by ICP-MS and EPMA and carried out radioactive carbon dating.

The result shows that Si, Al, Mg and Fe are concentrated on dark bands, which implies emplacement of clay minerals on the surface of the Kuzuu stalactite and Ishigaki stalagmite. The AMS14C dating result displays that carbonate of Kuzuu stalactite grew from 37,000 to 33,000 (14C age). We recognized a growth rate anomaly around the middle of the stalactite. In this presentation we discuss possible environmental factor and tectonic event to form banding textures on Kuzuu stalactite and Ishigaki stalagmite.

Keywords: stalactite, stalagmite