Early stages of Philippine Sea Plate birth, growth and migration: a tribute to Anne Deschamps

LALLEMAND, Serge1*; DESCHAMPS, Anne2

1Geosciences Montpellier, Montpellier University, CNRS, France, 2IUEM, Brest, France

The early stages of the Philippine Sea Plate (PSP) are debated among the scientific community. At least one fourth of the PSP area has disappeared by subduction along the Ryukyu and Philippine trenches, obliterating the relics of its northern and western boundaries, and by subduction erosion along the eastern Izu-Bonin-Mariana (IBM) margin. Furthermore, small parts might have also disappeared by intraplate local thrusting and/or subduction along the Gagua or Daito ridges. Another intriguing observation concerns the origin of the "proto-PSP" as seen in the Daito area, the southernmost West Philippine Basin, the Huatung Basin or even within the internal structure of the Izu-Bonin Arc. Indeed, Early Cretaceous ages have been discovered in most of these regions, i.e., much older than the commonly accepted ages of the PSP entrapment ranging from Early to Late Eocene. The so-called "forearc basalts" or "boninites" are often supposed to represent typical magmatism marking subduction initiation along a transform fault. A detailed examination of the geodynamic context of their emplacement allows to suggest another origin for these rocks. Even the kinematic evolution of the PSP does not make any consensus.

Based on the tremendous work that has been done by many teams since the 80’s, providing key data inserting into the PSP puzzle, and including the important contribution of Anne Deschamps in the late 90’s and early 20’s, we can deliver an updated picture of the early stages of the PSP tectonic evolution.

Keywords: Philippine Sea Plate, tectonic evolution
Rethinking spreading model of the northwestern West Philippine Basin (WPB): 39Ar/40Ar dating and geochemical constraints

SHINJO, Ryuichi1; ISHIZUKA, Osamu2

1Univ. Ryukyus, 2Geological Survey of Japan, AIST

We report 40Ar/39Ar dating results of basalts from the northwestern West Philippine Basin (around the Urdaneta Plateau area), with petrological/geochemical characteristics. Our samples are mostly from ROV KAIKO dives conducted in 2003.

Our dating results range from ~40 to ~32 Ma. These ages are younger than previously estimated seafloor ages based on studies for topography and magnetic anomaly lineations. In addition, geographical distribution of obtained ages appears to be incompatible with previous models. Therefore, if our dating results are correct, it requests rethinking about the spreading history of northwestern part of WPB.

Geochemical data revealed that basalts around the Urdaneta Plateau have OIB-like characteristics (as also reported in Ishizuka et al., 2013, Geology), confirming that plume activity involved in the spreading process of this part of basin.
Exhumation history of Taiwan and Mindoro orogenic belts and its implication to plate motion of the Philippine Sea plate

LEE, Y uan hsi¹ ; SHIU, Chung-wei¹ ; RAU, Reuy-juin² ; BACOLCOL, Toto³

¹ 1. Department of Earth and Environmental Sciences, National Chung-Cheng University, Taiwan, ²Department of earth sciences, National Cheng Kung University, Taiwan, ³Philippine Institute of Volcanology and Seismology, Philippines

Both Taiwan and Mindoro orogenic belts form as the collision between the Eurasia continental margin and Luzon arc. We conduct the low temperature thermochronology analysis to reveal the exhumation history in both orogenic belts.

In northern Mindoro the Mesozoic green schist facies strata show the oldest zircon fission track reset ages of ca.4-6 Ma, which is consistent with the Pliocene Punso conglomerate deposition in southern Mindoro Island and therefore indicative of the beginning of collision at ca.5-6 Ma.

Meanwhile the zircon fission track ages also imply similar exhumation history in Taiwan orogenic belt. The oldest reset zircon fission track ages are also 5-6 Ma and are consistent with deposit ages of the foreland basin. In addition, the Philippine trench and Okinawa trough started to develop from ca. 5-6 Ma.

Our new data support the model of the Philippine Sea plate has changed its moving direction to NW around 5-6 Ma, which had been suggested by Hall (2002).

Keywords: Taiwan orogenic belt, Mindoro orogenic belt, Philippine Sea plate, exhumation histroy, Luzon arc
Temporal constraints for the tectonic development of the Philippine ophiolite belts from new zircon U-Pb ages

TANI, Kenichiro 1*; GABO, Jillian aira S.2; HORIE, Kenji3; ISHIZUKA, Osamu4; PADRONES, Jenielyn5; PAYOT, Betchaida6; TEJADA, Maria luisa7; FAUSTINO-ESLAVA, Decibel V.8; IMAI, Akira5; ARAI, Shoji9; HOKADA, Tomokazu3; YUMUL JR., Graciano P.10; DIMALANTA, Carla B.6

1National Museum of Nature and Science, 2Kyushu University, 3National Institute of Polar Research, 4Geological Survey of Japan/AIST, 5Akita University, 6University of the Philippines, Diliman, 7Japan Agency for Marine-Earth Science and Technology, 8University of the Philippines, Los Banos, 9Kanazawa University, 10Apex Mining Co. Inc.

The tectonic framework of the Philippine Islands is important in understanding how the western Pacific margin developed along the Eurasian and the Pacific Plates since the Eocene.

The basement rocks of the Philippine Islands are characterized by the presence of ophiolitic complexes exposed among the islands. Yumul (2007, Island Arc) defined four belts in the Philippine ophiolites and proposed that they progressively become younger towards west, from Early ? Late Cretaceous at the easternmost belt to Eocene - Oligocene in the west. However, most of the ophiolitic complexes have been dated by radiolarians and foraminifera in the overlying sediments and lacked reliable radiometric ages from the igneous rocks.

To precisely determine the igneous ages of the Philippine ophiolites, we have conducted SHRIMP zircon U-Pb dating of the gabbroic and leucocratic rocks collected from the ophiolitic complexes in the Philippine Islands, including those from Luzon (Zambales, Isabela, and Lagonoy ophiolites), Masbate (Balul ophiolite), Tablas (Sibuyan ophiolite), Dinagat, and Cebu.

New zircon ages show that most of the ages obtained from the northern ophiolite belts are Eocene in age, from 52 Ma to 41 Ma. These ages coincide well with the opening of the West Philippine Basin (49 ? 33 Ma, Taylor and Goodliffe, 2004, GRL), which is a backarc basin formed behind the incipient Izu-Bonin-Mariana Arc. Furthermore, geochemical data available from the igneous rocks in the eastern ophiolite belts show backarc basin basalt-like geochemical affinities (e.g. Yumul, 2007), suggesting that these ophiolites are genetically associated with the West Philippine Basin.

On the contrary, southern ophiolites are significantly older, gabbroic and leucocratic rocks that are associated with the ophiolitic complex in Cebu and gabbroic rocks in Lagonoy and Dinagat ophiolites are Jurassic to Late Cretaceous (200 - 90 Ma) in age. Similar Mesozoic arc and ophiolitic rocks have recently discovered in the Daito Ridges, currently located north of the West Philippine Basin. Such Mesozoic terranes in the Philippine Sea Plate may potentially be correlated to the Mesozoic ophiolites in the southern Philippines, before the opening of West Philippine Basin in the Eocene.
Geologic and geochronological constraints on the Philippines Sea tectonics around 50 Ma

ISHIZUKA, Osamu1*; TANI, Kenichiro2; HARIGANE, Yumiko1; YAMAZAKI, Toshitsugu3; OHARA, Yasuiko4; KUSANO, Yuki5; EXP. 351, Scientific party6

1GSJ/AIST, 2National Museum of Nature and Science, 3AORI, Univ. Tokyo, 4HODJ, 5Kanazawa University, 6IODP

Recent geological and geophysical survey cruises as well as IODP drilling expeditions in the Philippine Sea are providing new geologic and geochronological information useful for tectonic reconstruction of the Philippine Sea plate. Especially, tectonic reconstruction around 50 - 55 Ma, i.e., the period immediately before and after the subduction initiation to form Izu-Bonin-Mariana (IBM) arc is of particular interest, because it is critical for understanding the possible tectonic processes to enable subduction initiation.

In this contribution, the following three sets of data recently published or obtained from this region will be introduced, and possible tectonic models which could consistently explain the new data will be discussed.

1) OIB-like magmatism in the Philippine Sea: 40Ar/39Ar ages from a 1000km NW-SE line of oceanic plateaus in and around the West Philippine Basin (WPB) demonstrates that they formed as a time-progressive volcanic chain mirrored either side of the WPB backarc spreading center (Ishizuka et al., 2013). In the north this chain is bounded by a Mesozoic remnant arc (i.e., Daito Ridge group). Geochemically these oceanic plateaus have an EM-2 ocean island basalt (OIB) signature matching the older 45-51 Ma volcanic edifices discovered overlapping the remnant arc and intervening basins. The wide distribution of these edifices could mark the first arrival of upwelling mantle. These features are consistent with the extension and splitting of the Mesozoic arc terrane, driven by regional upwelling centered on the impact of the mantle plume at c. 51 Ma.

2) YK10-14 and YK13-08 cruises by R/V Yokosuka investigated Palau Basin (southernmost part of the Philippine Sea plate) and southern part of WPB obtained some crucial geological and geophysical data (Sasaki et al., 2014) for reconstruction of the Philippine Sea Plate. 40Ar/39Ar dating of dolerite sample from the Palau Basin crust exposed at the Mindanao Fracture Zone gave a plateau age of 40.4 Ma. This result indicates that the spreading of the Palau Basin was still going on at 40.4 Ma. This age is within an age range of active spreading of the WPB (e.g., Okino and Fujioka, 2002). This strongly implies that contrary to the previous hypotheses, the Palau Basin formed while the WPB was still opening, and the Palau Basin is not the oldest part of the WPB.

3) IODP Exp.351, targeted evidence for the earliest evolution of the Izu-Bonin-Mariana arc following inception, was conducted in Amami Sankaku Basin (ASB), west of the Kyushu-Palau Ridge (KPR), i.e., paleo-IBM arc. Igneous basement of this site, which presumably corresponds to the basement of the IBM arc, was successfully recovered. On-board preliminary data suggests that basaltic basement is early-middle Eocene (or older) and geochemically similar to forearc basalts from IBM forearc. This implies that the area of initial seafloor spreading associated with subduction initiation covers an area from forearc to reararc of future IBM arc.

Keywords: Philippines Sea plate, Izu-Bonin-Mariana arc, OIB, West Philippine Basin
Upper-mantle shear-wave structure under Asia from Automated Multimode Inversion of waveforms

LEGENDRE, Cedric1+ ; ZHAO, Li1 ; CHEN, Qi-fu2

1Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, 2Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academ

An automated multimode inversion technique of partial waveform was applied to available data of broadband stations in Asia and surrounding regions.

It performs a fitting of the complete waveform starting from the S-wave onset to the surface wave. Assuming the location and focal mechanism of a considered earthquake as known, the first basic step is to consider each available seismogram separately and to find the velocity perturbations that can explain the filtered seismogram best. In a second step, each velocity perturbations serves as a linear constraint in an inversion for a 3D S-wave velocity model of the upper mantle.

We collected data for the years from 1977 to 2012 from all permanent stations as well as temporary experiments for which data were available.

In this way, a huge data set of about 12 million seismograms came about from which about 2.3 million seismograms provide 8 million linear constrains for the resulting 3D model.

The frequency content of the data associated with the sensitivity kernels as well as the path density in the considered region allows us to perform a high resolution tomography at a continental scale.

The resulting models exhibit an overwhelming detail in relation to the size of the region considered in the inversion. They are to our knowledge the most detailed models of shear wave velocity currently available for Asia and surroundings. Most prominent features are a details on the morphology of the Tibetan Plateau and its extent at depth that are properly mapped.

The vertical extent of its lithosphere as well as other cratonic lithosphere could be imaged at depths greater than 200 km. Orogenic volcanism is almost exclusively found in regions of shallow asthenosphere and in areas where the depth of the LAB changes significantly, along the passive margins.

Keywords: Tomography, Asia, Surface-waves
Subducted-slab constraints on late Cenozoic motion of the Philippine Sea plate and its collision with continental Asia

SUPPE, John1∗; WU, Jonny1

1Geosciences, National Taiwan University

The geology of the Eurasian margin near Taiwan and Japan contains a record of Philippine Sea plate tectonics from the Miocene to present-day. We present a detailed reconstruction of late Cenozoic Philippine Sea plate motions, for which we emphasize the implications for the geology of Taiwan, Japan, and East China Sea. The new Philippine Sea plate reconstruction is based on 3D mapping and unfolding of subducted slabs from seismic tomography of East Asia.

Using mapped slab constraints, we show that:

[1] The Pacific subduction zone near the Marianas and southern Izu-Bonin has remained +/− 250 km near its present-day position since at least ∼45 Ma, which provides an eastern limit to the Philippine Sea plate.

[2] A major 8000 km x 2500 km ocean once existed in the area now occupied by the Philippine Sea plate and is imaged as a set of flat slabs in the upper part of the lower Mantle. This now-vanished ocean, which we call the East Asian Sea stretched from present-day Taiwan and the Ryukyus to a southern limit near northern Australia and New Zealand.

[3] The subducted Philippine Sea plate near the Ryukyus has a maximum ∼1000 km NS length and a western NS edge of ∼1600 km. Therefore the northern edge of the Philippine Sea plate was far from continental Asia in early and middle Cenozoic when it was near the Equator, based on paleomagnetism.

[4] The Eurasian slab has a NS edge of ∼3000 km against which the northern Philippine Sea plate fit prior to initiation of the Manila trench subduction, providing a western limit to the Philippine Sea plate.

[5] These slab constraints severely limit the longitudinal position of the Philippine Sea plate and rule out models involving large late Cenozoic rotations. Geologic constraints near the continental Asian margin and paleomagnetism help fix the latitudinal position of the Philippine Sea plate.

Our slab-constrained plate tectonic model implies that from the Eocene to Miocene, the East Asian Sea progressively subducted southwards, overrun by a northward moving Philippine Sea plate that originated as part of the Indo-Australian Ocean. In middle Miocene, the arc that formed at the pre-subduction northern margin of the Philippine Sea plate collided with the Ryukyu and SW Japanese continental margin, with deformation penetrating deeply into the East China Sea. Erosion of the collisional mountain belt fed turbidite fans that extended ∼1000 km south onto the Shikoku basin of the Philippine Sea plate. This arc-continent collision was followed by subduction of Philippine Sea lithosphere under Eurasia and opening of the Okinawa trough backarc basin. Between 1-2 Ma the Philippine Sea plate motions changed from NNW to its present-day Pacific-like WNW motions, based on the limited ∼450 km extent of the Eurasian/South China Sea slab near Taiwan.

Keywords: Philippine Sea plate, arc-continent collision, Shikoku basin turbidites, Taiwan tectonics, southwest Japan tectonics, East China Sea tectonics
Accretion vs. tectonic erosion in Cenozoic margin of southwest Japan

KIMURA, Gaku¹*

¹Dept. Earth and Planetary Science, The University of Tokyo

Accretionary and erosive margins provide tectonic end-members within our understanding of the subduction zone setting, and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust which drags down the crust of the upper plate into the mantle. This process means that the “evidence” for such erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record, and must be speculated from indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface to the subducting oceanic plate, such as that provided by seamounts, has been suggested to work like an erosive saw carving into the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal decollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years (e.g. von Huene & Lallemand 1990).

Such an age gap in the ancient accretionary complex would be one of the signals for tectonic erosion in the past. Recently, a hypothesis that a tremendous amount of tectonic erosion has taken place during Early Cretaceous and middle to late Miocene time has proposed based on age gaps in the accretionary complex. Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. In the case of the middle to late Miocene period, for example, a drastic tectonic change after the opening of the Japan Sea and clockwise rotation of southwest Japan may be linked to ridge subduction or a switch in subduction from the Pacific to Philippine Sea Plate. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was renewed at ~6 Ma after igneous activity intruding the early Miocene accretionary prism. Kimura et al. (2014) interpreted that the subduction ceased between ~12 Ma to ~8 Ma due to the transference of subduction from the Pacific Plate to the Philippine Sea Plate, as opposed to the “continuous subduction with subduction erosion” viewpoint. These different scenarios need to be tested in the future.

References
Dynamic evolution of accretionary prism in the Nankai Trough

TSUJI, Takeshi1*; ASHI, Juichiro2; KIMURA, Gaku2

1I2CNER, Kyushu University, 2The University of Tokyo

To evaluate evolution of accretionary prism as well as forearc basin, we analyzed seismic reflection data acquired in the Nankai Trough. On the seismic profiles, the volcanic layer can be identified as strong reflection at the surface of accretionary prism beneath landward edge of the Kumano forearc basin. The accretionary prism beneath the strong reflection was constructed before the deposition of volcanic layer (14-15Ma). The undeformed basin sediment above the volcanic layer indicates that the old accretionary prism has not been much deformed after construction of the forearc basin. The accretionary prism trench-ward of the old prism was constructed at \textasciitilde6Ma. The age gap of accretionary prism indicates that plate subduction (or accretion process) was halted from 15Ma to 6Ma. Because the trench-ward younger accretionary prism is much deformed, the undeformed older accretionary prism beneath the volcanic layer could work as backstop. We further find a continuous ridge system beneath the Kumano forearc basin sediment and interpret that it was generated by activities of previous splay fault. The previous splay fault develops parallel to the backstop interface as well as the coastline of the Kii peninsula. These observations demonstrate that the evolution of accretion prism including backstop interface is not stable process, but it is strongly influenced by the plate convergence rate and direction.

Keywords: seismic data, accretionary prism, nankai trough, dynamic evolution, backstop
New constraints on the volcanic and tectonic evolution of SW Japan since 15 Ma from IODP EXP. 322 in the Shikoku Basin

NAKAJIMA, Takeshi¹; DANHARA, Tohru²; YAMASHITA, Tohru²; IWANO, Hideki²; ODA, Hirokuni¹; KANAMATSU, Toshiya³; ZHAO, Xixi⁴

¹Geological Survey of Japan, AIST, ²Kyoto Fission-Track Co.Ltd., ³JAMSTEC, ⁴University of California Santa Cruz

Tectonic model and origin of volcanism for Southwest Japan and the Philippine Sea Plate (PSP) since Middle Miocene have been controversial between “fixed TTT junction hypothesis” and “migrating TTT junction hypothesis” (Kimura et al., 2014). This study aims to provide new constraints on the volcanic and tectonic evolution of Southwest Japan since 15 Ma based on occurrence, mineral composition and fission-track dating of tuff beds and sandstone within two drill holes in the Shikoku Basin during EXP.322, IODP NanTroSEIZE seismogenic zone experiments. Large amount of tuffs with broad mineral composition had accumulated during 15-14.5 Ma, possibly because of swift subduction of the PSP. During 14.5-10.5 Ma, tuff deposition attenuated while large submarine fan sandstones had deposited in the Shikoku Basin until 12 Ma. Mineralogy and detrital fission-track dating of sandstone indicated that sources of sandstone were the Kumano Acidic Rocks and other parts of SW Japan. During 10.5-8 Ma, tuff and turbidite deposition ceased while rate of hemipelagic sedimentation decreased, suggesting quiet volcanism and tectonics in SW Japan. During 8-7 Ma, andesitic tuffs and scoria possibly derived from Izu-Bonin Arc temporarily increased with contemporaneous deposition of channelized volcaniclastic sandstone and sheet-like tuffaceous sandstone. After the second quiet period of volcanism during 7-5.5 Ma, tuff intercalation increased at 5.5 Ma. The present results contradict the “migrating TTT junction hypothesis” and support the “fixed TTT junction hypothesis” that Izu-Bonin Arc had collided with central Japan by 15 Ma with swift subduction of young Shikoku Basin, which resulted in Middle Miocene outer arc volcanism in SW Japan. This study also implies cessation of subduction of the PSP during 10.5-6 Ma, followed by resumption of subduction.

Keywords: SW Japan, Philippine Sea Plate, tectonics, volcanism, IODP
Present day comparison to the past convergent margin tectonics in Western Pacific by submersible dives

OGAWA, Yujiro1∗; KAWAMURA, Kiichiro2

1No affiliation, 2Yamaguchi University

Although some people believe that catastrophism overcomes uniformitarianism in the geological history, yet the concept of The present is a key to the past is adoptable and adaptable to the general understanding in a generic space and time dimension. As for the convergent margin geology and tectonics, the present is observable mostly under the sea by coring and submersible research, while the past is on land. Through various expeditions to the Japanese trenches, including Japan trench, Boso triple junction area, Sagami trough and Nankai trough in addition to some Izu-Bonin-Mariana trenches (Ogawa et al. (eds.) 2011 Springer Solid Earth Series 8), we conclude the best way of classifying these types of margins is into three categories: 1) erosion and collapsing, 2) partial accretion, and 3) full accretion. The Japan trench is known as a typical erosional type although a small scale accretionary prism has developed in its toe, partly during the 2011 Tohoku earthquake (Kodaira et al., 2012). However, this prism may be a temporary feature that will be recycled by large scale erosion and collapse associated with huge scale landsliding (Kawamura et al., 2012; Strasser et al., 2013). The landward side of the Sanriku Escarpment is largely underlain by Miocene diatomaceous, calcite-cemented breccias that show tectonic erosion and collapse has occurred during the past 10 Myrs (Ogawa, 2011). The Boso TTT triple junction is another example of a large collapsed margin, in which under the thin cover of Pleistocene are recycled Miocene diatomaceous sediments of 15 Ma that can be mapped from the Bonin (Ogasawara) trench to the south, north to Boso on land (Ogawa and Yanagisawa, 2011). Most of the on land Miocene to Pleistocene accretionary prisms in Miura-Boso peninsular areas (Emi, Miura and Chikura prisms) are the result of accretion from the Izu forearc side to Honshu, and the trench sedimentation and accretion style is well correlatable to the present Nankai prism documented by the Shinkai 6500 JAMSTEC expeditions (Kawamura et al., 2009, 2011; Anma et al., 2011 and others) are almost equivalent to the on land observations in the Miura-Boso areas as many duplexes, thrust faults, and isochinal folds, commonly with layer parallel faults (Hanamura and Ogawa, 1993; Yamamoto et al., 2005; Michiguchi and Ogawa, 2009, 2011; Muraoka and Ogawa, 2011). Only the Pliocene to Pleistocene Chikura prism was developed from fully ponded trench fill sediments, which are equivalent to the present Sagami Bay of the northern Sagami trough (Ogawa et al., 1989). The type of margin, the erosional to collapsed type margin (Japan trench, Boso triple junction), a stepwise sector development of prism (Nankai prism), or a ponded trench fill prism (Sagami Bay) might be due to the type of trench-fill sediments; without, or partly filled, or fully sedimented.

Keywords: subduction zone, accretionary prism, erosional margin, collapse, submersible
Where have all the slabs gone in the Northwestern Pacific subduction zones?

KA WAKATSU, Hitoshi¹ ; OBAYASHI, Masayuki² ; HONDA, Satoru¹

¹Earthquake Research Institute, University of Tokyo, ²Institute of Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology

Based on the new high-resolution seismic image of the mantle beneath the northwestern Pacific subduction zones (Obayashi et al., 2015, in preparation), we discuss the fate of subducted Pacific slabs in the region, as well as their possible relation with the opening of Japan Sea and the widespread off-arc Cenozoic volcanism in Northeast China.

It is well known that the slab subducting from the Japan Trench (Honshu slab) is stagnant in the mantle transition zone. The stagnant slab extends to the west and reaches to northeast China where several late Cenozoic volcanoes exist. These volcanoes are located far from the volcanic front of the Honshu slab subduction and some study proposed the relation between the off-arc volcanoes and the stagnant Honshu slab. The active magmatism started about 25Ma and followed by opening of the Japan Sea back-arc basin that separated Japan away from Eurasia continent. It is suggested that the both surface phenomena were caused by upwelling asthenosphere from petrological viewpoint.

The new tomographic P-wave velocity model with focus on the northwestern Pacific is obtained by combing P data from NECESSArray with global data. Differential travel times between any two stations as a function of frequency are inverted by taking finite frequency effect into account to improve resolution through the upper mantle. The result indicates, to our surprise, the absence of long-tailed stagnant Honshu slab in the mantle transition zone beneath NE China, which was earlier interpreted by Tang et al. (2014, Nature Geoscience) as a gap of the stagnant slab for a deep upwelling in the region that may feed the Changbaishan volcanism. With a help of geodynamic modeling (Honda, 2014, G-cubed), we hope to revisit this issue, as well as the geodynamics of the Northwestern Pacific subduction zones to understand where all the slabs have gone.

Keywords: slab, Japan sea
An extensive swath of stagnant flat slab tomographic anomalies have been documented within the 410 to 660 km mantle transition zone under Japan, Korea and NE China, downdip of the northwest Pacific trench Benoiff zones (e.g. Fukao et al., 1992; Zhao et al., 2015). In this study we mapped these slab anomalies in 3D from MITP08 global seismic tomography (Li et al., 2008) and used these slabs to constrain a new regional NW Pacific plate tectonic reconstruction in the Cenozoic.

Our mapped slabs included the Izu-Bonin, Kuril, and Kamchatka slabs, their associated stagnant flat slabs, and other regional slabs. The mapped slabs were then unfolded (i.e. structurally restored) to a spherical Earth surface to assess their pre-subduction geometries. The unfolded slab constraints were input into plate tectonic reconstructions using Gplates software.

When unfolded the western Pacific stagnant slabs have a minimum 2000 km east-west length. The mapped northern stagnant slab edge near the western Aleutians and the southern edge at the southernmost Izu-Bonin trench are roughly east-west and consistent with transform directions predicted by mean Pacific motions since 47.5 Ma.

Using the slab constraints in a quantitative plate reconstruction, we show it is unlikely the stagnant slabs were subducted by simple eastward retreat of Eurasia in the Cenozoic relative to a mantle reference. Instead, we show that the stagnant slabs were formed by ~3500 km of Eocene to present-day fast western Pacific subduction at the eastern margin of a slow-moving Eurasia. After subduction, the Pacific slabs advanced westward >2000 km under NE Asia within the mantle, pushed westward along the mantle transition zone by the fast Pacific subduction. We discuss the fit of this plate reconstruction against the timings of Japan Sea, Kuril Basin and Okhotsk Sea opening and NE China intraplate volcanism. We show possible reasons why the stagnant flat slabs did not penetrate the lower mantle. Today the western Pacific stagnant flat slabs form a barrier that has prevented other NE Asia slabs from penetrating the lower mantle.

Keywords: western Pacific, plate tectonic reconstruction, stagnant slab, Izu-Bonin, Kuril-Kamchatka, seismic tomography
Combining tomographic results, geologic history and geodynamic modeling in the subduction zones around Japanese Islands

HONDA, Satoru

In this presentation, I show the slab feature estimated from the seismic tomography result combined with the recent estimate of d(ln Vp)/dT [Karato, 2008] and the upper limit of potential temperature estimated from the deep earthquakes and the theoretical modeling of the subducting slab [Emmerson and McKenzie, 2007]. Obtained results show a significant gap and/or the diluted slab in the topmost lower mantle just below the stagnated slab in the transition zone, that is consistent with the previous view of the flushing or avalanche of the mantle flow caused by the interaction between the mantle convection and the endothermic phase transition at the 660 km depth. However, such intermittent flow may not occur, if the strongly temperature-dependent viscosity is taken into account. It is also known that the slab morphology, especially, the stagnation of slab, is controlled by the movement of surface plate. Thus, to understand the slab morphology in the subduction zone around the Japanese Islands, I construct a simple 2D model of subduction zone which takes into account the geologic factors such as the opening of the Japan Sea. I find two possibilities of the cause of the existence of such gap and diluted slab: the opening of the Japan Sea and the subduction of old ridge.

Keywords: subduction zone, seismic tomography, geologic history, geodynamic modeling, Japanese Islands
Tectonic evolution of the Philippine Sea: Magnetic data collected during the Japanese continental shelf survey

OKINO, Kyoko

1 AORI, The University of Tokyo

Marine magnetic anomalies have been used to date the seafloor, characterize the oceanic crust and reconstruct the evolution process of ocean basins. Japanese continental shelf survey project has collected high-quality, dense magnetic data in the Philippine Sea and the adjacent areas for two decades. The compiled and processed magnetic anomaly data improve our understanding of the tectonic history of the area. Clear magnetic lineation patterns in the Shikoku, Parece Vela basins allow us to elaborate the spreading history of these basins, including the initiation and cessation process of the backarc opening. The anomalies associated with the Kyushu-Palau Ridge also record the transitional phase from arc volcanism to backarc rifting-opening. The West Philippine Basin, Daito Ridges and its intervening small basins, that was formed before the formation of the paleo-IBM arc, show their specific magnetic characteristics. These areas are considered to have moved northward and rotated after their formation. The skewness analysis of magnetic data can provide us some insights about paleo-latitude and/or rotation.

Keywords: tectonics, Philippine Sea, magnetic anomaly, backarc basin, arc
Petrography of mantle xenoliths from Lyudao, in the Luzon arc, Taiwan

KOMARU, Chihiro1*; MORISHITA, Tomoaki1; TAMURA, Akihiro1; ARAI, Shoji1

1 Graduate School of Natural Science, Kanazawa University

Lyudao, island of southeastern Taiwan, is located at the north end of the Luzon arc. Lyudao is volcanic island, which is made up of andesitic rocks and pyroclastic rocks. Peridotite xenoliths have been found in andesite of Lyudao and Lanyu (Chen, 1988 Acta Geol. Taiwanica). Lanyu is the island, which is located on the south of Lyudao. Peridotite xenoliths have been found in the Luzon arc, such as Batan Island (Arai and Kida, 2000 Island Arc; Arai et al., 2004 J. Petrol.), Pinatubo volcano (Kawamoto et al., 2013 PNAS) and Siayan Island (Y. Iizuka, unpublished date). Peridotite xenoliths from Luzon arc can provide spatial information of mantle wedge peridotites at the subduction zone. Because Lyudao is located at the north end of the Luzon arc, it is important for addressing the spatial variations. Peridotite xenoliths in Lyudao Island have never been, however, studied in details since Chen (1988). Here we report petrological characteristics of peridotite xenoliths from Lyudao.

Peridotite xenoliths are mainly harzburgite with one olivine websterite. Harzburgite shows two types in terms of grain size; fine-grained (less than 0.1mm across) and coarse-grained (several millimeters across). These textures coexist in hand-specimen. There is no difference in mineral mode between them. These petrological textures are the same as those of Batan Island (Arai et al., 1996). Amphibole occurs at the border part of the host andesite and peridotite xenoliths. The Fo content [=100Mg/(Mg+Fe2+) atomic ratio] of olivine is from 91 to 92. The Al2O3 content and Mg# [=Mg/(Mg+Fe2+) atomic ratio] of orthopyroxene are from 2.4 to 3.5 wt%, and from 0.90 to 0.92, respectively. The Al2O3 and Cr2O3 content, and Mg# of clinopyroxene are from 1.7 to 4.3 wt%, about 1 wt%, and from 0.90 to 0.94, respectively. The TiO2 and Na2O contents of clinopyroxene are very low, being from 0 to 0.2 wt%. Fe3+/(Cr+Al+Fe3+) atomic ratio of spinel is very low, mostly being less than 0.2. There Cr# [=Cr/(Cr+Al) atomic ratio] and TiO2 content is from 0.4 to 0.6, and from 0 to 0.1wt%, respectively.

Keywords: xenolith, mantle, peridotite, Luzon arc, Taiwan, Lyudao
Deformation history of the Chimei Fault, eastern Taiwan: Insights from paleostress and fold analysis

KUO, Szu-ting1*

1Institute of Geosciences, National Taiwan University

The Chimei Fault, the only fault cutting across the Coastal Range in eastern Taiwan, is the boundary fault that thrusts the forearc basement (Tuluanshan Formation) over the forearc sedimentary rocks (Paliwan Formation). Although previously deemed to be a reverse fault with strike-slip component, paleostress pattern along the Chimei Fault zone has not yet been established. In order to reconstruct the deformation history of the fault, this study carries out paleostress and fold analysis along a well-exposed outcrop in the central part of the Coastal Range.

The Chimei Fault zone is composed of 100 and 500-m wide damage zones in the hanging wall and the footwall, with several sets of subsidiary faults developed intensely. Based on crosscutting relationship, the fault-slip data could be divided into three stages. The earliest stage is characterized by the left-lateral fault slickensides that crosscut mineral veins related to heat flow activity in the Tuluanshan Fm. In the footwall, a 100 m-wide fold zone, including boudins and mud-filled veins, indicates deformation of buried unconsolidated sedimentary rocks during the second stage. The third stage is characterized by brittle subsidiary faults. The predated folds and postdated brittle faults indicate that the deformation depth of fault rocks decreased during faulting. In addition, both folds and faults show N-S compression, suggesting that two structural processes record the same paleostress status.

The three-stage evolution could be comparable to previous reconstruction from paleomagnetic analysis: (1) The initial left-lateral component is consistent with island-arc movement since late Miocene; (2) Folding and faulting of the footwall then illustrate the N-S forearc closure since late Pliocene.

Keywords: fault damage zone, paleostress analysis, fold analysis, reverse fault