(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-01 会場:102B

時間:5月27日09:00-09:15

A feasibility study for geomagnetic measurements using the High Altitude LOng range aircraft (HALO)

A feasibility study for geomagnetic measurements using the High Altitude LOng range aircraft (HALO)

SCHACHTSCHNEIDER, Reyko<sup>1\*</sup>; GEBLER, Alban<sup>1</sup>; LESUR, Vincent<sup>1</sup> SCHACHTSCHNEIDER, Reyko<sup>1\*</sup>; GEBLER, Alban<sup>1</sup>; LESUR, Vincent<sup>1</sup>

In June 2012 the High Altitude LOng range aircraft (HALO), originally acquired for atmospheric studies by the German Ministry for Research and Education, was used for a geophysical study. On board the aircraft were gravity, GNSSS reflectometry and geomagnetic instruments. The geomagnetic instrumentation consisted of two identical acquisition chains, each containing an Overhauser and a fluxgate magnetometer. They were mounted below each wing in under-wing canisters. For the first time, we were able to collect geomagnetic measurements with such a high and fast flying vehicle, covering a very large area in a short time period. The study was conducted during four flight days over the Italian peninsula. Due to the mounting of the instruments very close to the aircraft body, the measurements are strongly contaminated by the aircraft signal. Furthermore, the sensitivity of some of the scientific instruments on board HALO prevented large variations of the plane's pitch and roll angles during the calibration flight and thus a proper calibration of the vector magnetometers and the full determination of the aircraft signal. Nevertheless, we were able to obtain the long-wavelength part of the geomagnetic field in the study area and showed that geomagnetic measurements with HALO are possible and promising.

キーワード: aeromagnetics, geomagnetism Keywords: aeromagnetics, geomagnetism

<sup>&</sup>lt;sup>1</sup>Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences

<sup>&</sup>lt;sup>1</sup>Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-02

会場:102B

時間:5月27日09:15-09:30

## ヘリコプターによる FALCON AGG(空中重力偏差法)地熱調査について FALCON AGG survey using Helicopter for geothermal exploration

千葉 昭彦 <sup>1\*</sup>; Cevallos Carlos<sup>2</sup>; 久谷 公一 <sup>3</sup>; 桑村 純一 <sup>4</sup> CHIBA, Akihiko<sup>1\*</sup>; CEVALLOS, Carlos<sup>2</sup>; HISATANI, Koichi<sup>3</sup>; KUWAMURA, Junichi<sup>4</sup>

<sup>1</sup> 住鉱資源開発株式会社, <sup>2</sup>CGG Aviation, <sup>3</sup> 独立行政法人石油天然ガス・金属鉱物資源機構, <sup>4</sup> 株式会社フグロジャパン <sup>1</sup>Sumiko Resources Exploration & Development Co., Ltd., <sup>2</sup>CGG Aviation, <sup>3</sup>Japan Oil, Gas and Metals National Corporation, <sup>4</sup>Fugro Japan Co., Ltd.

豪州やカナダを中心に金属鉱床探査や石油探査へ空中重力探査が適用されている。石油天然ガス・金属鉱物資源機構 (JOGMEC) が九州のくじゅう、霧島地域での地熱調査においてヘリコプターを用いた偏差法による空中重力探査を適用したのでその手法とくじゅう地域の結果の概要を紹介する。

空中重力探査には地表重力探査と同様に重力加速度を測定するものと重力加速度の空間的な変化の割合 (重力偏差) を計測するものがあり、今回適用した  $FALCON^{TM}AGG$  は後者に属する。米海軍によって開発され、現在は CGG 社が実施する空中重力探査システムであり、ヘリコプターによる重力偏差法探査を行うことができる唯一の空中重力探査システムでもある。重力偏差分布は重力異常分布に比べて細かな地質構造を捉えることができることに加えて、ヘリコプターで低空を密な測線間隔でデータを取得できるので空中重力探査の中でも最も詳細な探査を行うことができる。

FALCON では 2 組計 8 個の加速度計を水平な円盤に載せて航空機に搭載し、飛行中に円盤を回転させて重力加速度の水平微分を計測する。同時に GPS で航空機の位置を計測するとともにレーザースキャナーで近傍の地形の形状を計測し、地形補正、タイライン補正およびマイクロレベリング等の補正を行った後、調査範囲の水平微分 2 成分  $G_{NE}$  および  $G_{UV}$  の平面分布を求める。この水平微分それぞれの平面分布を 2 次元フーリエ変換した波数領域で重力偏差テンソルや重力異常を求める。これをフーリエ変換法とよび、地下構造の表現に適した重力鉛直勾配  $G_{DD}$  と重力値  $g_D$  の分布を探査結果としている。また、計測した空間領域での水平微分  $G_{NE}$  および  $G_{UV}$  分布をもたらす等価ソースの平面分布を逆解析で求め、等価ソースで生じる  $G_{DD}$  と  $G_{DD}$  の分布を順解析で求める等価ソース法も適用している。

JOGMEC は、国内における地熱探査での空中重力偏差法適用の第1段階として、既存の地熱発電所があり、既存資料も少なくない九州地方のくじゅう地域と霧島地域で調査をおこなった。両地域とも250mの測線間隔で南北方向に対地高度120m以下の地形に沿った平滑曲線飛行でデータを取得した。八丁原地熱発電所と大岳地熱発電所周辺は、精査地域として測線間隔125mで測定を行い、図に示すような調査結果が得られた。鉛直重力偏差図では、本地域の地質構造の卓越方向であるNW-SE方向とそれに交差するE-W方向の構造を認めることができる。本調査では重力ポテンシャルの形状を表すシェイプ・インデックスを重力偏差テンソルから求めている。シェイプ・インデックス図では、鉛直重力偏差図より地質境界を明確に捉えることができた。また、道路や小径に沿って数100m以上の間隔で測定を行った地表重力探査の重力異常分布を空中重力偏差法の飛行曲面に上方接続したものと、空中重力偏差法による重力異常図を比較した所、ほぼ同様な傾向を示すことと、空中重力偏差法の方がより細かい構造を捉えていることが確認された。

空中重力偏差法は、地形や植生のために地上の重力探査では近づけないような地域も含め、広範囲の探査対象地域を効率的に細かく調査できるため、細かな構造を捉えることができる。また、地表の重力探査で広範囲を探査する場合には、複数の機関や複数の年で実施された調査を編集することが多く、調査間のデータに不均質が認められることがあるが、空中重力偏差では均質に取得したデータを均質に処理するため、データの信頼性も高い。ただし、空中探査であるため測定精度には限界があり、狭い範囲の精査は地表重力探査で実施すべきであろう。また、重力偏差は深部の地質構造に起因する長波長成分が欠如しているので、今回の探査対象としている地熱貯留層には適している可能性がある。今後、日本国内においても、地熱探査だけでなく、従来から重力探査が適用されてきた断層調査等へも重力偏差法が有力な探査手法として普及していくと期待される。

キーワード: 空中重力偏差法探査, 地熱探査, くじゅう地域

Keywords: Airborne Gravity Gradiometry, geothermal exploration, Kuju area

# Japan Geoscience Union Meeting 2015 (May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-02

会場:102B

時間:5月27日09:15-09:30

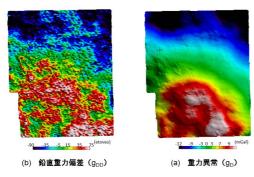



図 くじゅう精査地域空中重力偏差法 フーリエ変換法成果図

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-03

会場:102B

時間:5月27日09:30-09:45

地熱地域の磁気異常再解析—秋田焼山を例として— Aeromagnetic 3D subsurface imaging of geothermal areas - A case of Akita-Yakeyama Volcano, northeast Japan

大熊 茂雄 <sup>1\*</sup>; 中塚 正 <sup>1</sup> OKUMA, Shigeo<sup>1\*</sup>; NAKATSUKA, Tadashi<sup>1</sup>

秋田焼山は仙岩地熱地域に位置する第四紀火山であり、山麓部で地熱開発が行われ大沼地熱発電所や澄川地熱発電所が稼働中である。新エネルギー・産業技術総合開発機構(NEDO)や地質調査所(現産業技術総合研究所)においても地熱調査に係わる調査が行われ、空中磁気データの解析も行われている(Okuma, 1998;大熊・須藤, 1987)。Okuma (1998)は付近で行われたボーリング結果に基づき作成された地質断面図を拘束条件として、フォワードモデリングにより秋田焼山の磁気構造を推定した。この結果、北山腹に伏在する貫入火成岩体に加え南山腹には逆帯磁の古玉川溶結凝灰岩の伏在をモデリングできた。しかしながら、この作業には先見情報と相当量の時間と労力が必要であった。

そこで、今回イタリア・ストロンボリ火山での磁気異常の解析に用いた 3 次元イメージング(Okuma et al., 2009;Nakatsuka and Okuma, 2014)を秋田焼山にも適用し、この結果を先のフォワードモデリングの解析結果と対比してみた。南北断面図では、北山腹では伏在する貫入岩体に対応するように高磁化強度域が解析されており、その底部深度も大凡地下 2km 程度で地下の温度分布と整合的である。一方、南山腹では古玉川溶結凝灰岩の分布域で負の磁化強度が、さらに南麓では表層の新規火山岩類の分布に対応するように高磁化強度域が解析された。また、東西断面図では秋田焼山北斜面に伏在する貫入岩体に対応して高磁化強度域が分布するが、その中心は西寄りで、かつより浅部に頂部深度を持つ位置関係が地質断面図と整合的である。また、秋田焼山南方の倉沢山付近を中心として分布する逆帯磁の玉川溶結凝灰岩(須藤、1987)に対応してその深部を中心として顕著な負の磁化強度が分布する。

キーワード: 空中磁気探査, 磁気異常, 地熱地域, 秋田焼山, フォワードモデリング, 3 次元イメージング Keywords: aeromagnetic survey, magnetic anomaly, geothermal area, Akita-Yakeyama Volcano, forward modelling, 3D imaging

<sup>1</sup> 産業技術総合研究所地質調査総合センター

<sup>&</sup>lt;sup>1</sup>Geological Survey of Japan, AIST

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-04

会場:102B

時間:5月27日09:45-10:00

## 空中電磁探査を活用した火山体調査事例 Case study of Volcano Survey using the Airborne Electromagnetic survey

瀬戸 秀治 <sup>1\*</sup>; 高原 晃宙 <sup>1</sup>; 木下 篤彦 <sup>1</sup>; 清水 孝一 <sup>1</sup>; 石塚 忠範 <sup>1</sup>; 河戸 克志 <sup>2</sup>; 奥村 稔 <sup>2</sup> SETO, Shuji <sup>1\*</sup>; TAKAHARA, Teruyoshi <sup>1</sup>; KINOSHITA, Atuhiko <sup>1</sup>; SHIMIZU, Yoshikazu <sup>1</sup>; ISHIZUKA, Tadanori <sup>1</sup>; KAWATO, Katsushi <sup>2</sup>; OKUMURA, Minoru <sup>2</sup>

現在、日本には 110 もの活火山の分布が確認されている。近年では、御嶽山(1984年)や栗駒山(2008年)で火山体の一部が崩壊し、大規模な土砂災害が発生している。また、阿蘇山(2012年)や伊豆大島(2013年)では、同時多発的な表層崩壊を起因とした土石流により大きな被害が発生している。一方、東日本大震災以降、低頻度大規模災害への対応が課題となっており、各火山において、崩壊が発生するおそれのある斜面の把握が求められている。そこで、国土交通省では、平成 25 年度から、火山活動が活発で社会的影響の大きい 29 火山(緊急減災対策砂防計画策定対象火山)のうち、15 火山で空中物理探査を活用した火山体調査を進めている。

本研究では、火山体調査結果を収集し、地形・地質情報と比抵抗構造とから崩壊するおそれのある斜面を抽出するとともに、崩壊土砂量を推定することを試みた。

本発表では、北海道駒ヶ岳、吾妻山、浅間山、御嶽山の事例について紹介する。

キーワード: 空中物理探査,火山体調査,比抵抗,地形,地質,活火山

Keywords: Airborne Electromagnetic survey, Volcano Survey, specific electrical resistance, topography, geology, active volcano

<sup>1</sup>独立行政法人土木研究所,2大日本コンサルタント株式会社

<sup>&</sup>lt;sup>1</sup>Public Works Research Institute, <sup>2</sup>Nippon engineering consultants co., ltd.

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-05

会場:102B

時間:5月27日10:00-10:15

## 2014年霧島新燃岳無人へリ空中磁気測量 Aeromagnetic survey at Shinmoedake volcano by using unmanned helicopter in 2014

小山 崇夫 <sup>1\*</sup>; 金子 隆之 <sup>1</sup>; 大湊 隆雄 <sup>1</sup>; 渡邉 篤志 <sup>1</sup>; 武尾 実 <sup>1</sup>; 柳澤 孝寿 <sup>2</sup>; 本多 嘉明 <sup>3</sup> KOYAMA, Takao <sup>1\*</sup>; KANEKO, Takayuki <sup>1</sup>; OHMINATO, Takao <sup>1</sup>; WATANABE, Atsushi <sup>1</sup>; TAKEO, Minoru <sup>1</sup>; YANAGISAWA, Takatoshi <sup>2</sup>; HONDA, Yoshiaki <sup>3</sup>

#### 1. はじめに

新燃岳は2011年の準プリニー式噴火に発した一連の噴火活動は収束をみせ、現在まで主だった噴火現象や表面現象はみられていない。しかし、地殻変動や地震活動は依然確認されており、昨年には付近の硫黄山の噴火警戒レベルが引き上げられるなど予断を許さない状況が続いている。今後の霧島の活動の動向を見極める上でも多項目観測を長期間に渡って継続することは重要である。

我々は噴火活動後の 2011 年 5 月を初めとして、新燃岳およびその周辺において無人へリコプターを利用した多項目観測を実施してきた。昨年 2014 年 10 月 21 日には通算 4 度目となる繰り返し空中磁気測量を実施した。

#### 2. 無人ヘリ空中磁気測量

無人へリ空中磁気測量は、無人へリコプター YAMAHA RMAX-G1 を用いて実施した。全磁力センサーは機体磁気の影響を軽減させるため機体からおよそ 4 m 離して吊り下げた状態で搭載し、測定飛行した。新燃岳西側の領域東西約 3 km x 南北約 4 km の範囲を測線間隔およそ  $100 \, \text{m}$ 、対地高度およそ  $100 \, \text{m}$  で測定飛行した。総飛行距離は約  $63 \, \text{km}$  であった。なお、観測当時の地磁気活動度を示す柿岡での地磁気 K 指数は 2 で、外部磁場はおおむね静穏で磁気観測には適当であったと言える。

#### 3. 結果

取得された全磁力データを解析したところ、およそ 1000nT の全磁力異常が見られ、また大局的には以前の測定結果を非常によく再現していた。続いて、今回の測定結果を、2011 年 5 月の測定結果と比較したところ、新燃岳火口周辺で顕著な全磁力変化が見られた。変化の分布は、これまでの測定でも確認されたように、南側正北側負の双極型パターンであったが、強度が土 250 nT とさらに強まっており、2011 年の噴火活動で火口内に滞留した溶岩の帯磁がより進んだことを示唆する結果となった。火口内溶岩が一様に磁化したとして磁化強度を推定すると、およそ 4.0 A/m である。

一連の観測から求められた火口内溶岩の磁化強度の時間変化に着目すると経過時間の 1/2 乗によく比例する。このことから溶岩は熱拡散で徐々に冷却をし、現在も基本的にはその状況を継続していることがわかった。

キーワード:繰り返し空中磁気測量,無人ヘリコプター,新燃岳

Keywords: repeated aeromagnetic survey, unmanned helicopter, Shinmoedake

<sup>1</sup> 東京大学地震研究所, 2 独立行政法人 海洋研究開発機構, 3 千葉大学

<sup>&</sup>lt;sup>1</sup>Earthquake Research Institute, The University of Tokyo, <sup>2</sup>JAMSTEC, <sup>3</sup>Chiba University

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-06

会場:102B

時間:5月27日10:15-10:30

空中電磁探査技術を活用した大規模表層崩壊予測技術に関する研究 Study on the prediction of the large shallow landslides areas using Airborne Electromagnetic Survey

木下 篤彦  $^{1*}$ ; 瀬戸 秀治  $^{1}$ ; 高原 晃宙  $^{1}$ ; 清水 孝一  $^{1}$ ; 石塚 忠範  $^{1}$ ; 西岡 恒志  $^{2}$ ; 桜井 亘  $^{3}$ ; 河戸 克志  $^{4}$ ; 奥村 稔  $^{4}$ ; 影浦 亮太  $^{4}$ 

KINOSHITA, Atsuhiko<sup>1\*</sup>; SETO, Shuji<sup>1</sup>; TAKAHARA, Teruyoshi<sup>1</sup>; SHIMIZU, Yoshikazu<sup>1</sup>; ISHIZUKA, Tadanori<sup>1</sup>; NISHIOKA, Tsuneshi<sup>2</sup>; SAKURAI, Wataru<sup>3</sup>; KAWATO, Katsushi<sup>4</sup>; OKUMURA, Minoru<sup>4</sup>; KAGEURA, Ryota<sup>4</sup>

<sup>1</sup> 独立行政法人土木研究所, <sup>2</sup> 和歌山県, <sup>3</sup> 国土交通省近畿地方整備局紀伊山地砂防事務所, <sup>4</sup> 大日本コンサルタント株式会社

<sup>1</sup>Public Works Research Institute, <sup>2</sup>Wakayama Prefecture, <sup>3</sup>Kii-Sanchi Sabo Office, Ministry of Land, Infrastructure, Transport and Tourism, <sup>4</sup>Nippon Engineering Consultants Co.,LTD.

近年、空中電磁探査技術を用いた深層崩壊危険箇所や火山体の調査が実施されており土砂災害発生箇所の予測に関する研究が徐々に進歩している。一方、表層崩壊についても2014年広島災害、2013年伊豆大島災害、2011年那智川災害など多くの災害が発生しており空中電磁探査技術を用いて崩壊発生箇所の予測ができれば砂防事業の優先度や警戒避難につなげることができる。そこで本研究では、2011年に大規模な表層崩壊が発生した那智川流域を例に挙げ、空中電磁探査の結果から2011年の崩壊箇所と非崩壊箇所の比抵抗特性の違いについて検討した。

まず、地質と比抵抗特性との関係について整理した。那智川流域は熊野酸性岩(花崗斑岩)のエリアと熊野層群(砂岩泥岩互層)のエリアに分かれているためこれらが比抵抗分布として区別可能であるかを検討した。次に 2011 年の崩壊箇所を比抵抗分布と重ね合わせ、どのような比抵抗の箇所で崩壊が発生したかを検討した。最後に那智川流域の崩壊斜面と非崩壊斜面について、比抵抗コンターの構造や地下での比抵抗変化率に着目して、その違いについて検討した。

検討の結果、熊野酸性岩(花崗斑岩)は比抵抗値が高く、熊野層群(砂岩泥岩互層)は低くなったため、空中電磁探査で地質境界を精度良く表すことができた。また 2011 年の崩壊斜面のほとんどは地質境界付近に分布していることが分かった。このことから鉛直方向の地質特性の違いにより崩壊が発生したものと考えられる。崩壊斜面と非崩壊斜面の違いについて、崩壊斜面は比抵抗コンターが鉛直であること、崩壊発生斜面近傍の上方で比抵抗変化率の大きい領域が途絶することが分かった。一方、非崩壊斜面は、比抵抗コンターが斜面に平行であること、斜面の上方から下方に連続して比抵抗変化率の大きい領域が連続することが分かった。比抵抗構造については地質構造を表しており、崩壊斜面は比抵抗コンターが鉛直であることから、崩壊斜面の地質構造は鉛直であり、熊野層群に対して熊野酸性岩が鉛直に近い構造で貫入していると考えられる。また、地質構造が鉛直である場合浸透した水が斜面下方に流れにくく、地下水位が上昇しやすく崩壊しやすいと考えられる。比抵抗変化率の大きいエリアはボーリング調査の結果と合わせると地下水位を表していると考えられる。崩壊斜面は比抵抗変化率の大きい領域が途絶していることから排水性が低かったと考えられる。以上のことから、表層崩壊の危険度評価において、空中電磁探査は地質構造や地下水位、地下水の排水性を評価できると考えられる。

キーワード: 空中電磁探査, 表層崩壊

Keywords: airborne electromagnetic survey, shallow landslide

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-P01

会場:コンベンションホール

時間:5月27日18:15-19:30

### 北海道石狩低地の磁気構造

Aeromagnetic constraints on the subsurface structure of the Ishikari Depression, Hokkaido Japan

大熊 茂雄 1\*; 中塚 正 1

OKUMA, Shigeo<sup>1\*</sup>; NAKATSUKA, Tadashi<sup>1</sup>

1 産業技術総合研究所地質調査総合センター

産業技術総合研究所で行われている本邦沿岸域の地質・地下構造の理解を目的とした多面的な地質情報集作成の一環として、石狩低地帯及び周辺地域の磁気異常分布の概要を把握するため、既存の空中磁気データを編集して「石狩低地帯及び周辺地域の20万分の1空中磁気図(全磁力異常)」を作成した(大熊・中塚、2014). また、新たに高分解能空中磁気探査を苫小牧地域で実施して、当該地域の詳細な空中磁気異常図を作成した(大熊・中塚、2014).

まず、対地 1,500 mの滑らかな高度での空中磁気データ(中塚・大熊、2009)から、図面作成範囲のデータを抽出し、石狩低地帯及び周辺地域の空中磁気図(全磁力異常)を編集した。また、磁気異常分布の説明のために、全磁力異常から極磁力異常への変換を行った。作成した極磁力異常図を参照すると、石狩低地では、北上一石狩磁気ベルトと呼ばれる高磁気異常帯が南北方向に中央を縦断し、地表地質分布(尾崎・小松原、2014)とは対応しない。磁気ベルトは複数の磁気異常の高まりが連続するもので、波長が長いことから磁気異常源の賦存深度が深いことが予想される。この成因については従来諸説あるが、磁気ベルトの近傍で掘削された基礎試錐や石油調査井により、約3,700~4,600mの抗底付近で塩基性の火成岩や花崗岩類が確認され関係が示唆されている。

そこで、今回、当該地域の地下構造を探るため、磁気異常の3次元イメージング(Nakatsuka and Okuma, 2013)を実施した(Okuma et al., 2014)。その結果、石狩低地では地下深部に伏在する南北方向に連続する磁気構造が解析され、北上一石狩磁気ベルトに対応する。解析された磁気構造は北部で浅く(5km)幅が狭く(10km)、南部で深く(10km)幅が広い(25km)。また、解析された磁化強度は大凡1A/m程度であり、これは磁気構造が苫小牧地域の地下4,600m付近で掘削により確認されている花崗質岩である可能性を示唆している。

高分解能空中磁気探査の結果、苫小牧地域の沖合では北上-石狩磁気ベルトに対応する南北性の高磁気異常に加えて、北北西-南南東方向の長波長の高磁気異常が重畳し、その南西端部が同方向の海底地形の顕著な段差に対応することが明らかとなり、当該地域の磁性鉱物を含む堆積構造との関係が示唆された。

キーワード: 空中磁気探査, 磁気異常, 北上 - 石狩磁気ベルト, 石狩低地, 苫小牧, 3 次元イメージング

Keywords: aeromagnetic survey, magnetic anomaly, Kitakami-Ishikari Magnetic Belt, Ishikari Depression, Tomakomai, 3D imaging

<sup>&</sup>lt;sup>1</sup>Geological Survey of Japan, AIST

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-P02

会場:コンベンションホール

時間:5月27日18:15-19:30

空中電磁探査を活用した深層崩壊の発生の恐れのある斜面抽出のための検討 Study of Extraction Method of the Slope tending to Cause Deep-seated landslide using Airborne Electromagnetic method

高原 晃宙  $^{1*}$ ; 瀬戸 秀治  $^{1}$ ; 野池 耕平  $^{1}$ ; 木下 篤彦  $^{1}$ ; 清水 孝一  $^{1}$ ; 石塚 忠範  $^{1}$ ; 河戸 克志  $^{2}$ ; 奥村 稔  $^{2}$ ; 影浦 亮太  $^{2}$ 

TAKAHARA, Teruyoshi<sup>1\*</sup>; SETO, Shuji<sup>1</sup>; NOIKE, Kohei<sup>1</sup>; KINOSHITA, Atsuhiko<sup>1</sup>; SHIMIZU, Yoshikazu<sup>1</sup>; ISHIZUKA, Tadanori<sup>1</sup>; KAWATO, Katsushi<sup>2</sup>; OKUMURA, Minoru<sup>2</sup>; KAGEURA, Ryota<sup>2</sup>

1独立行政法人土木研究所,2大日本コンサルタント株式会社

山崩れや崖崩れなどの斜面崩壊の現象には、主に表層崩壊と深層崩壊等が挙げられる。表層崩壊は、表層土が崩れ落ちる現象である。一方で、深層崩壊は、すべり面が表層崩壊よりも深部で発生し、表土層だけでなく深層の地盤までもが崩壊土塊となる比較的規模の大きな崩壊現象である。深層崩壊は、表層崩壊より発生頻度は少ないが、生産される土砂量は多く、甚大な被害を引き起こす可能性がある。近年では、平成23年台風12号に伴う豪雨により紀伊半島でいくつもの深層崩壊が発生している。

深層崩壊の発生には、岩盤の強度や岩盤中の地下水移動が関係すると考えられており、深層崩壊の発生を精度よく推定するためには、広域に岩盤内の情報を得ることが重要である。そこで、本研究では、地質・地下水情報を広域に取得できる空中電磁探査に着目し、深層崩壊の発生の恐れのある斜面の抽出手法の検討を行った。

研究の対象とした領域は、早川流域(山梨県)及び別府田野川流域(宮崎県)である。これらの流域で、深層崩壊発生 斜面と岩盤クリープ斜面の鉛直方向の比抵抗パターンについての検討結果を報告する。

早川流域は、四万十帯瀬戸川層群の粘板岩と砂岩の互層が分布する。深層崩壊発生斜面と岩盤クリープ斜面の鉛直方向の比抵抗パターンは、浅部は高比抵抗帯を示し、密な等比抵抗コンターを介して深部は相対的な低比抵抗帯であった。ボーリング調査結果から、浅部は地下水位以浅の割れ目が発達した風化岩盤で、深部は新鮮岩が分布することが確認されていた。よって、浅部の高比抵抗帯は割れ目が発達した風化岩を示し、深部の低比抵抗帯は新鮮岩を反映したものと考えられる。

別府田野川流域は四万十帯日向層群と日南層群の砂岩、泥岩とその互層が分布する。深層崩壊発生斜面と岩盤クリープ斜面の鉛直方向の比抵抗パターンは、浅部は高比抵抗帯を示し、密な等比抵抗コンターを介して深部の低比抵抗と接しているケース(早川流域と同様)と浅部が低比抵抗帯を示し、深部に向かって高比抵抗になるケースが認められた。後者のようなケースを示した領域で実施されたボーリング調査結果では、浅部は割れ目が発達した風化岩及び多くの泥質岩、深部は新鮮岩が分布することが確認された。

本研究では、異なる地域・地質であっても、深層崩壊発生斜面と岩盤クリープ斜面では共通して、浅部が高比抵抗で深部が低比抵抗となる2層構造を確認することができた。しかし、多くの泥質分を含む斜面では、深層崩壊斜面と岩盤クリープ斜面の比抵抗パターンは浅部が低比抵抗で深部が高比抵抗となる逆の2層構造も存在することから留意する必要がある。また、浅部から深部に向かって相対的に高比抵抗、低比抵抗、高比抵抗となる3層構造の存在も確認することができた。このような比抵抗パターンについても、今後詳細に検討する必要がある。

キーワード: 空中電磁探査, 深層崩壊, 比抵抗

Keywords: Airborne Electromagnetic Method, Deep-seated landslide, Specific Electrical Resistance

<sup>&</sup>lt;sup>1</sup>Public Works Research Institute, <sup>2</sup>Nippon Engineering Consultants Co.,LTD.

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-P03

会場:コンベンションホール

時間:5月27日18:15-19:30

航空重力偏差探査による重力勾配テンソルを用いたフィルター及び半自動解釈手法 Semi-automatic interpretation methods using gravity gradient tensor data obtained by airborne gravity gradient survey

楠本 成寿 <sup>1\*</sup> KUSUMOTO, Shigekazu<sup>1\*</sup>

地下構造推定,特に構造境界抽出における重力勾配テンソルの重要性や有用性は,1930年代後半頃から指摘されている。今日では,古典的な水平一次微分や鉛直一次微分,鉛直二次微分だけでなく,これらの組み合わせによる,より高度で複雑な構造境界検出手法が議論されてきている。これらは,地下の構造変化に伴う重力異常の空間変化を微分によって抽出する手法であり,いずれも重力異常の短波長成分を強調する,一種のハイパスフィルターである。

一般に、このようなフィルターを含め、地質学的・地球物理学的拘束条件を付加することなく、重力異常から地下構造境界等を推定する手法は、半自動解釈手法とよばれる。この解釈手法には、上記の重力異常の空間微分を用いる手法の他、重力勾配テンソルの固有値と固有ベクトルを用いる手法がある。

本講演では、まず、重力勾配テンソルを用いたフィルターおよび半自動解釈手法についてのレビューを行う。その後、FALCON(R)AGGにより得られた九重地域の重力勾配データに、16種類のハイパスフィルターと半自動解釈手法を適用し、個々の手法の特性、及び実用の際に必要と思われる改善点等について述べる。

なお、本研究成果は、JOGMECによる平成26年度空中重力調査データを地熱資源調査等に用いるための手法検討作業に関する委託業務により得られたものである。記して感謝致します。

<sup>1</sup>富山大学大学院理工学研究部(理学)

<sup>&</sup>lt;sup>1</sup>Graduate School of Science and Engineering for Research (Science), University of Toyama

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.



STT52-P04

会場:コンベンションホール

時間:5月27日18:15-19:30

Three-dimensional resistivity modelling of GREATEM survey data from the Nojima Fault, Awaji Island, south-east Japan.

Three-dimensional resistivity modelling of GREATEM survey data from the Nojima Fault, Awaji Island, south-east Japan.

ABD ALLAH, Sabry<sup>1\*</sup>; MOGI, Toru<sup>1</sup>; ITO, Hisatoshi<sup>2</sup>; JOMORI, Akira<sup>3</sup>; YUUKI, Youichi<sup>4</sup>; FOMENKO, Elena<sup>5</sup>; KIHO, Kenzo<sup>2</sup>; KAIEDA, Hideshi<sup>2</sup>; SUZUKI, Koichi<sup>2</sup>; TSUKUDA, Kazuhiro<sup>2</sup> ABD ALLAH, Sabry<sup>1\*</sup>; MOGI, Toru<sup>1</sup>; ITO, Hisatoshi<sup>2</sup>; JOMORI, Akira<sup>3</sup>; YUUKI, Youichi<sup>4</sup>; FOMENKO, Elena<sup>5</sup>; KIHO, Kenzo<sup>2</sup>; KAIEDA, Hideshi<sup>2</sup>; SUZUKI, Koichi<sup>2</sup>; TSUKUDA, Kazuhiro<sup>2</sup>

<sup>1</sup>Institute of Seismology and Volcanology, Hokkaido University, <sup>2</sup>Civil Engineering Research Laboratory, Central Research Institute of Electrical Power Industry, <sup>3</sup>NeoScience Co., 5-11-22 Osato, Sennan, Osaka, 590-0526, Japan, <sup>4</sup>Geotechnical Center, Oyo Co., 2-61-5 Toro, Saitama, 331-8688, Japan., <sup>5</sup>Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow

<sup>1</sup>Institute of Seismology and Volcanology, Hokkaido University, <sup>2</sup>Civil Engineering Research Laboratory, Central Research Institute of Electrical Power Industry, <sup>3</sup>NeoScience Co., 5-11-22 Osato, Sennan, Osaka, 590-0526, Japan, <sup>4</sup>Geotechnical Center, Oyo Co., 2-61-5 Toro, Saitama, 331-8688, Japan., <sup>5</sup>Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow

An airborne electromagnetic (AEM) survey using the grounded electrical-source airborne transient electromagnetic (GREATEM) system was conducted over the Nojima Fault on Awaji Island, south-east Japan, to assess GREATEM survey applicability for studying coastal areas with complex topographic features. To obtain high-quality data with an optimised signal-to-noise ratio, a series of data processing techniques was used to acquire the final transient response curves from the field survey data.

The 1D inversion results were feasible in that the horizontal resistivity contrast was not much higher than the true contrast, but they were not reasonable in that the horizontal resistivity values were greatly changed. To circumvent this problem, we performed numerical forward modelling using a finite-difference staggered-grid method (Fomenko and Mogi, 2002) adding a finite-length electrical dipole source routine to generate a three-dimensional (3D) resistivity structure model from GREATEM survey data of the Nojima Fault area. The 3D model was based on an initial model consisting of two adjacent onshore and offshore layers of different conductivity such that, a highly conductive sea of depth (10?40 m) is placed on top of a uniform half-space, assuming the presence of topographic features on the inland side. We examined the fit of the magnetic transient responses between field data and 3D forward-model computed data, the latter were convolved with the measured system response of the corresponding dataset. The inverted 3D resistivity structures showed that the GREATEM system has the capability to map underground resistivity structures as deep as 500 m onshore and offshore. The GREATEM survey delineated how seawater intrudes on the land side of the fault and indicated that the fault is a barrier to seawater invasion.

キーワード: 3D EM forward modeling, GREATEM, Numerical approximations, Airborne Electromagnetic, Fault zone survey Keywords: 3D EM forward modeling, GREATEM, Numerical approximations, Airborne Electromagnetic, Fault zone survey