Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

AAS21-P09

Room:Convention Hall

Time:May 27 18:15-19:30

Comprehensive analyses of air pollutants at Suzu, Noto peninsula, Japan

SADANAGA, Yasuhiro^{1*}; NAKAO, Yuki¹; ISHIYAMA, Ayana¹; TAKAJI, Ryo¹; MATSUKI, Atsushi²; IWAMOTO, Yoko³; WATANABE, Koichi⁴; SATO, Keiichi⁵; OSADA, Kazuo⁶; BANDOW, Hiroshi¹

¹Osaka Prefecture University, ²Kanazawa University, ³Tokyo University of Science, ⁴Toyama Prefectural University, ⁵Asia Center for Air Pollution Research, ⁶Nagoya University

Recent remarkable economic progress in East Asia has increased emissions of air pollutants such as nitrogen oxides, sulfur dioxide, ammonia and volatile organic compounds. Such pollutants are transported over a long distance with photochemical reactions and then arrive at Japan as aged species such as gas phase nitric acid (HNO₃), particulate nitrate (NO₃⁻), sulfate (SO₄), peroxy nitrates (PNs), organic nitrates (ONs), ammonium (NH₄⁺), organic aerosol (Org) and so on. Many researches on the transboundary pollution in Japan focus on the areas of western Japan near the Asian continent. On the other hand, it is important to investigate the transboundary air pollution in the central Japan area because there are many large cities. In addition, the central Japan is moderately far from the Asian continent, so that more aged air mass from the Asian continent would come at the central Japan. In this research, continuous observations of such air pollutants at Suzu, Noto peninsula, Japan. Suzu is representative remote area and located at the central Japan.

Observations are performed at NOTOGRO (NOTO Ground-based Research Observatory) supersite (37.45°N, 137.36°E) in Suzu. Total odd nitrogen species (NO_y) and total nitrate ($T.NO_3 = HNO_3 + NO_3^-$) were measured by a scrubber difference / NO-O₃ chemiluminescence method. PNs and ONs were measured by a thermal dissociation / cavity attenuated phase shift spectroscopy method. CO, O₃ and SO₂ were observed by non-dispersive IR, UV absorption, and pulsed UV fluorescence methods, respectively. Org, NH_4^+ , SO₄ and fine NO_3^- were measured by an aerosol mass spectrometer. SO₄ was also measured by a thermal reduction / pulsed UV fluorescence method.

Results of SO₄ and T.NO₃ were reported in this abstract. The air mass origins were classified into five groups; China and Korea (CK) North China (NC), Japan (JP), Russia (RU), and Sea (S), by backward trajectory analyses. Concentrations of air pollutants from CK air mass origin were generally high. In many cases, SO₄ concentrations from JP were lower than those from CK, while T.NO₃ concentrations from JP were similar to those from CK. In addition, SO₄ concentrations from CK were very high, but T.NO₃ concentrations from CK were not, in August 2013 and June 2014. Many of SO₄ in remote area is present as fine particles while NO₃⁻ exists as coarse particles mainly. The deposition velocity of coarse particles (ca. 0.03-1.24 cm s⁻¹) is larger than that of fine aerosols (ca. 0.05-0.6 cm s⁻¹). In addition, the deposition velocity of HNO₃ (ca. 1-8 cm s⁻¹) is larger than that of NO₃⁻. The lifetime of SO₄ is longer than that of T.NO₃, so that SO₄ contributes strongly to the transboundary air pollutants will be described.

Keywords: Long-range transport, Air pollutants, East Asia