Model-Aided Analysis of FACE Effects on Rice Canopy Photosynthesis, Transpiration, and Water Use Efficiency

Ikawa Hiroki²; 吉本 真由美 ²; 小林 和彦 ³; 岡田 益巳 ⁴
IKAWA, Hiroki²; OUE, Hiroki¹; YOSHIMOTO, Mayumi²; KOBAYASHI, Kazuhiro³; OKADA, Masumi⁴

¹Faculty of Agriculture, Ehime University, ²National Institute for Agro-Environmental Sciences, ³Graduate School of Agricultural and Life Sciences, The University of Tokyo, ⁴National Agricultural Research Center for Tohoku Region, ⁵Faculty of Agriculture, Iwate University

Sustainable agricultural practice requires promising crop productivity with efficient water use. Given the projected increase in atmospheric CO₂ concentration [CO₂], our understanding on the CO₂ effects on rice productivity (i.e., photosynthesis) and water use (i.e., transpiration) on a leaf scale improved in the last few decades, particularly with Free-Air CO₂ Enrichment (FACE) experiments that enable a simulation of a future agricultural field with high [CO₂]. However, very few information is yet available as to how the investigation on a leaf-level response of photosynthesis and transpiration to [CO₂] is translated to the whole canopy photosynthesis and transpiration (Shimono et al., Glob. Change Biol., 2013; Yoshimoto et al., Agric. For. Meteorol., 2005). This is partly due to the limited size of a FACE ring where it is difficult to apply top-down measurements, such as the eddy covariance technique. In this study, we quantified the effect of [CO₂] on rice canopy photosynthesis, transpiration and water use efficiency, using a multi-layer model with the model parameters obtained from single-leaf photosynthesis and transpiration measurements. With the model parameters carefully determined, we delineated the effects of [CO₂] on the canopy photosynthesis and transpiration through the changes in physiological and micrometeorological conditions for a better understanding on future rice productivity and water use.