Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

BPT23-26

会場:104

時間:5月25日17:30-17:45

化学リーチング手法による高濃度レアアース泥からのレアアース抽出技術 Chemical leaching experiments on the highly REY-rich mud collected near the Minamitorishima Island.

高谷 雄太郎 ^{1*}; 藤永 公一郎 ²; 中村 謙太郎 ³; 飯島 耕一 ¹; 加藤 泰浩 ² TAKAYA, Yutaro ^{1*}; FUJINAGA, Koichiro ²; NAKAMURA, Kentaro ³; IIJIMA, Koichi ¹; KATO, Yasuhiro ²

Since the discovery of rare earths and yttrium (REY)-rich mud distributed widely on a deep seafloor in the Pacific Ocean (Kato et al., 2011), it has received broad attention as a new resource for REY. More recently, during research cruise KR13-02 of R/V Kairei, extremely REY-enriched deep-sea mud containing more than 6,000 ppm total REY (\sum REY) was collected near Minamitorishima Island, northwestern Pacific Ocean. One of the key issues on the future development and utilization of the new deep-sea mineral resources (REY-rich mud) is to establish a procedure to extract REY from the mud. Kato et al. (2011) showed that chemical leaching is an effective means to extract REY from REY-rich mud. In this study, therefore, we conducted series of leaching experiments on highly REY-rich mud (\sum REY \approx 3,500 ppm) collected near Minamitorishima Island to determine the optimum conditions of REY leaching. Our results showed that more than 95% and 80 % of \sum REY can be recovered by hydrochloric acid and sulfuric acid, respectively. REY recovery was at the highest under the conditions of the lower acid concentration (0.25-0.5 mol/L), shortest leaching time (-5min), and room temperature (25 °C). These leaching conditions are strong advantages for the development of REY-rich mud.

キーワード: 深海底鉱物資源, レアアース泥, 化学リーチング

Keywords: deep-sea mineral resources, REY-rich mud, chemical leaching

¹海洋研究開発機構, ²東大・工・FRCER, ³東大・工・システム創成

¹JAMSTEC, ²FRCER, Univ. of Tokyo, ³Sys. Innovation, Univ. of Tokyo