Compositional diversity of Archaean mantle estimated from Sr and Nd isotopic systematics of basaltic rocks in North Pole

Two types of oceanic basalt, mid-ocean ridge basalt (MORB) and oceanic island basalt (OIB), have large variations in chemical and isotopic compositions, suggesting the compositional heterogeneity of the mantle by the differentiation process related to the material recycling. This research aims at revealing the timing which the crust-mantle recycling system has been established in the early Earth, and how it transforms into the present-day style through the time, based on geochemical analyses of the Archean basalts from the North Pole and the Isua regions.

The North Pole region (3.5 Ga), located in the central Pilbara Craton, northwestern Australia, and the Isua Supracrustal Belt (3.8 Ga), southwestern Greenland, represent the Archean accretionary complexes. In these areas, the Archean MORBs and OIBs have been identified on the basis of their occurrence and oceanic plate stratigraphy, which have a possibility to record the old mantle recycling system and differentiation events.

We have analyzed trace element and $^{87}\text{Sr}/^{86}\text{Sr}$, $^{143}\text{Nd}/^{144}\text{Nd}$ isotopic compositions of MORBs and OIBs in North Pole (NP MORBs and NP OIBs), and those in Isua Supracrustal Belt (ISB MORBs and ISB OIBs). Concerning the North Pole basalts, we have also analyzed the igneous clinopyroxenes (cpx) to evaluate the effect of the post-igneous alteration or metamorphism by examining the partitioning of elements between the cpx and whole rock.

The trace element compositions of NP MORBs and OIBs are roughly similar to each other in REEs composition. A relatively small variation of NP MORBs and OIBs can be reproduced by 5-35% melting of the primitive mantle. On the other hands, ISB MORBs and OIBs exhibit distinct geochemical characteristics, and can be reproduced by ~15% to ~35% melting of the primitive mantle, respectively. These results suggest that the source mantles of NP MORBs and OIBs were similar, whereas the source mantles of ISB MORBs and OIBs were different in chemical composition.

The Sr isotopic compositions of both NP basalts and ISB basalts are largely scattered, and the isochron age is inconsistent with previous studies. Furthermore, the trace element pattern shows spikes in Rb and Sr, and as for NP basalts, partitioning of these elements between cpx and whole rock (or estimated melt) is in a disequilibrium relation. From these evidences, the Rb-Sr system seems to have been disturbed by post-igneous alteration or metamorphism.

On the contrary, the Nd isotopic compositions of both NP basalts and ISB basalts are thought to show the original properties, based on the evidences of the equilibrium partitioning of REEs and the well-defined isochron age consistent with previous studies. The initial ε_{Nd} values of NP MORBs and OIBs are similar to each other and show a slightly negative values, whereas those of ISB MORBs and OIBs are systematically different, which is consistent with the REE variation as mentioned earlier. Based on these geochemical data, we propose the following model to explain the temporal variation in composition of the Archean mantle; (i) >3800 Ma; recycling of plate material and melting occurred quite actively and therefore the mantle was highly differentiated to produce MORB and OIB from different sources, (ii) $3460-3800$ Ma; mantle-crust mixing events occurred, and the compositional variation of the mantle became smaller, (iii) at 3460 Ma; differentiation-recycling system restarted, and volcanic rocks (including MORBs and OIBs) have rather primitive composition, representing the homogenized mantle, and (iv) <3460 Ma; mantle heterogeneity gradually develops in the material recycling system, generating the compositional differences between MORB and OIB again. This model requires a drastic event for homogenization at the stage (ii), and may provide a new insight into the crust-mantle evolution system and its physical model.

Keywords: Archaean mantle, Nprth Pole, Isua, oceanic basalt, mantle diversity