Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

(May 24th - 20th at Makuhan, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

MAG38-11 Room:301B Time:May 26 11:45-12:00

Transport of radiocesium in the Niida River, Fukuhsima Prefecture in 2011-2014

NAGAO, Seiya^{1*}; TADO, Shu¹; UEMURA, Teruaki¹; KANAMORI, Masaki¹; KIRISHIMA, Akira²; MIYATA, Yoshiki¹; OCHIAI, Shinya¹; YAMAMOTO, Masayoshi¹

Surface deposition of 134 Cs and 137 Cs reveals considerable external radioactivity above 3000k Bq/m² in a zone extending northwest from the NPP after the Fukushima Daiichi Nuclear Power Plant (NPP) accident. Therefore, it is important to elucidate the short-term to long-term impacts of the accident on ecosystems of river watershed environments. This study investigated the transport of 134 Cs and 137 Cs in a small river, Niida River running through IIdate Viledge, in Fukushima Prefecture, Japan at normal and high flow conditions during 2011-2014.

Field experiments were conducted at a fixed station (Kinouchi bridge) in the lower Niida River during the period of May 2011-December 2014. The 20 L of surface river water samples were collected at the station using buckets. The radioactivity of 134 Cs and 137 Cs in the river waters before and after the filtration was measured with gamma-ray spectrometry using ammonium molybdophosphate (AMP)/Cs compound method.

Total radioactivity of ¹³⁷Cs (dissolved and particulate phases) in the river waters ranged from 0.11 to 4.18 Bq/L during May 2011-December 2014. Highest value was found in May 2011. Total ¹³⁷Cs radioactivity indicates the decreasing trend with increasing time at normal flow condition. However the higher radioactivity was observed after rain events. The ¹³⁷Cs radioactivity increased by 1.83 Bq/L after the heavy rain event by Typhoon Guchol in June 2012, and 1.68 Bq/L by Typhoon Jelawat in October 2012.

Percentage of ¹³⁷Cs associated with riverine suspended solids was 47-48% at normal flow condition in July and September 2011, but after December 2011 ranged from 75 to 93% at normal flow condition and 86-91% at high flow condition due to rain events. The radioactivity of particulate phase of ¹³⁷Cs ranged from 20 to 42 Bq/g-riverine suspended solids. Rain events are mainly contributed to the transport of radiocesium in the Niida River.

Keywords: Cs-134, Cs-137, rain event, riverine suspended solids

¹Kanazawa University, ²Tohoku University