Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

会場:106

時間:5月27日10:00-10:15

内部発熱対流におけるセルサイズのRa数依存性に関する現象論モデルについて A phenomenological model for convective cell size in a fluid layer with internal heat generation at low Rayleigh numbers

熊谷 一郎 ¹*; 阿部 竜太 ²; 田坂 裕司 ²; Davaille Anne³; 村井 祐一 ²; 柳澤 孝寿 ⁴ KUMAGAI, Ichiro¹*; ABE, Ryuta²; TASAKA, Yuji²; DAVAILLE, Anne³; MURAI, Yuichi²; YANAGISAWA, Takatoshi⁴

¹ 明星大学 理工学部,² 北海道大学 工学研究院, ³FAST, CNRS, パリ南大学, ⁴ 海洋研究開発機構 地球深部ダイナミクス 研究分野

¹School of Science and Engineering, Meisei University, ²Faculty of Engineering, Hokkaido University, ³Laboratoire FAST, CNRS, Universite Pairs-Sud, ⁴Department of Deep Earth Structure and Dynamics Research, JAMSTEC

The convective behavior of a fluid layer with internal heat generation at low Rayleigh number ($6 \le \text{RaI/RaIc} \le 12$) was experimentally investigated. The horizontal fluid layer of 0.5 wt% KCl water solution was internally heated by Joule heating using the electric current. We quantitatively measured 2-D temperature and velocity fields by seeding the micro-encapsulated thermo-chromic liquid crystals in the fluid layer. We experimentally obtained the fluid dynamic scaling on non-dimensional temperature and the maximum downwelling velocity as a function of the Rayleigh number, and also refined the experimental data obtained by the previous studies. The scaling relations were combined with a phenomenological model based on the stability of the top thermal boundary layer. This phenomenological model consistently explained the increase in convective wavelength with increasing the Rayleigh number.

Keywords: internal heat generation, natural convection, cell size, visualization, experiment, fluid mechanics