Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

PCG30-21

会場:A02

時間:5月27日10:15-10:30

衝突クレーター形成に伴うイジェクタ速度分布に関する実験的研究 Ejecta velocity distribution for impact crater formed on quartz sand: Effect of projectile density on crater scaling law

辻堂 さやか ¹; 荒川 政彦 ^{1*}; 鈴木 絢子 ²; 保井 みなみ ¹; 松榮 一真 ¹; 高野 翔太 ¹; 長谷川 直 ² TSUJIDO, Sayaka¹; ARAKAWA, Masahiko^{1*}; SUZUKI, Ayako²; YASUI, Minami¹; MATSUE, Kazuma¹; TAKANO, Shota¹; HASEGAWA, Sunao²

1 神戸大学大学院理学研究科, 2 宇宙航空研究開発機構 / 宇宙科学研究所

¹Graduate School of Science, Kobe University, ²Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science

衝突クレーターの形成は、太陽系の形成、進化過程において普遍的な現象である。天体衝突による表層進化の研究を行う上で、衝突クレーターに関するスケール則が必要となる。スケール則を用いることで、実験室規模の実験結果を実際の天体規模のクレーター形成過程に適用することが可能となる。本研究では、スケール則に対する弾丸密度の影響を調べるため、 $1.1-11~{\rm g~cm^{-3}}$ の異なる密度をもつ 8 種類の弾丸を用いて、衝突速度 $100-200~{\rm m~s^{-1}}$ の低速度域における衝突クレーター形成実験と、衝突速度の影響を調べるためのポリカーボネイト弾丸を用いた $1.5-7~{\rm km~s^{-1}}$ の高速度域における衝突クレーター形成実験を行った。

各弾丸、各衝突速度において得られたエジェクタ速度分布は、 π スケール則による式、 $v_0/\sqrt{gR}=k_2(x_0/R)^{\circ}(-1/\mu)$ 、により整理できた。 v_0,g,R 、 x_0 はそれぞれ放出速度、重力加速度、クレーター半径、放出位置を表し、 k_2 および μ は主にターゲットによる定数である。 μ は弾丸密度に依存し、低密度弾丸における 0.31 - 0.43 から高密度弾丸における 0.6 - 0.7 まで、弾丸密度とともに大きくなることがわかった。また、高速度域において得られた速度分布から、衝突点近傍の x_0 <4a (a は弾丸半径) の範囲では点源近似が成り立たず、速度分布がベキ乗則に従わないことがわかった。

一方、クレーターサイズに関する π スケール則から、低速度域では μ が 0.55 と求まったが、この値は、同じ速度域 において各弾丸に対してエジェクタ速度分布から求めた μ の平均値と近い。また、高速度域ではクレーターサイズの π スケール則から求まった μ は 0.44 であり、 μ には衝突速度依存性があると考えられる。

エジェクタ粒子の放出角度 (θ) は、衝突点付近では $30-48^{\circ}$ の間で大きくばらつくが、衝突点から離れるとばらつきは小さくなり、さらにその値は小さくなる。衝突速度が低速度では $x_0>0.6~R$ において、放出角度は $30-40^{\circ}$ と放出位置によらずほぼ一定となった。一方、衝突速度が高速度では $x_0=0.7~R$ を越えると放出角度が大きくなることがわかった。

エジェクタカーテンの角度は、エジェクタ速度分布と放出角度の両者によって決まる。今回の実験では、弾丸密度の増加とともに 43° から 63° まで大きくなることがわかった。

この実験で得られた結果を、クレーター形成時の掘削流を表した Z モデル(Maxwell, 1977)と比較すると、実験により得られた μ と θ との関係は Z モデルでは説明できないことがわかった。そこで点源が、ある深さdを持つ場合のクレーター形成過程にも適用できる拡張 Z モデル(Croft, 1980)を用いて比較した所、すべての実験結果に対する μ 及び θ は適切なZとdによって説明可能であることがわかった。さらに、点源深さを確認するために Quarter-space 実験により、クレーター形成時における実際の地下の掘削流を調べた。その結果、拡張 Z モデルから得られた流線と実験から調べた掘削流を比べると、流線の始点は必ずしも一点であるとは限らず、線滴に分布している可能性があることがわかった。

キーワード: 衝突過程, レゴリス, クレーター形成, 小惑星表面, イジェクタカーテン, スケール則 Keywords: Impact processes, Regoliths, Cratering, Asteroid surfaces, Ejecta curtain, Scaling Law