Polar wind に対する流出光電子の効果
Effect of escaping photoelectrons on the polar wind outflows

北村 成寿 1*; 関 華奈子 1; 西村 幸敏 2; McFadden James P. 3; 阿部 琢美 4; 山田 学 5; 渡部 重十 6; Yau Andrew 7

KITAMURA, Naritoshi 1*; SEKI, Kanako 1; NISHIMURA, Yukitoshi 2; MCFADDEN, James P. 3; ABE, Takumi 4; YAMADA, Manabu 5; WATANABE, Shigeto 6; YAU, Andrew 7

1 名大・太陽地球環境研究所, 2 カリフォルニア大サンゼス校・大気海洋, 3 カリフォルニア大バークレー校・宇宙科学, 4 JAXA・宇宙科学研究所, 5 千葉工大・惑星探査研究センター, 6 北海道情報大学, 7 カルガリー大学・天体物理学科

1 STEL, Nagoya University, 2 Dept. of Atmos. and Oceanic Science, UCLA, 3 Space Science Laboratory, UCBerkeley, 4 ISAS/JAXA, 5 PERC, Chiba Institute of Technology, 6 Hokkaido Information University, 7 Dept. of Phys. and Astronomy, Univ. of Calgary

A statistical analysis using a long-term (over one solar cycle) photoelectron dataset obtained by the Fast Auroral SnapshoT (FAST) satellite (3000-4200 km altitude) during geomagnetically quiet periods demonstrates that the polar wind ion flux estimated from electron outflows does not change with increasing photoelectron production due to increasing solar activity, while the magnitude of the field-aligned potential drop (~15-25 V), which reflects low-energy photoelectrons back to the ionosphere, increases with increasing solar activity. The magnitude of the field-aligned potential drop is likely developed by photoelectrons themselves so as to equilibrate electron fluxes with the ion fluxes. Another statistical analysis using the thermal ion data obtained by the Akebono satellite at solar maximum implies that contribution of O\(^+\) ions to the total ion flux in the polar cap is small owing to almost zero upward bulk velocity at least below ~7000 km altitude during geomagnetically quiet periods. Thus, the polar wind ion flux is dominated by H\(^+\) ions, and the H\(^+\) ion flux has been predicted to be regulated by the production rate in the topside ionosphere. The combination of these results indicates that it is the source region of H\(^+\) ions in the topside ionosphere and not the photoelectron flux that control the polar wind outflow.

キーワード: 極風, イオン流出
Keywords: Polar wind, Ion outflow