Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

PPS01-19

会場:A03

時間:5月27日10:10-10:25

宇宙望遠鏡群を用いた多波長プラズマ遠隔観測が明らかにする木星オーロラ加速の ダイナミクス

Dynamics of Jupiter's auroral acceleration investigated by multi-wavelength plasma remote sensing with space telescopes

木村 智樹^{1*}; Badman Sarah²; 垰 千尋³; 吉岡 和夫¹; 村上 豪¹; 山崎 敦¹; 土屋 史紀⁴; Bonfond Bertrand⁵; Kraft Ralph⁶; Elsner Ronald⁸; Branduardi-Raymont Graziella⁷; Gladstone Randy⁹; 藤本 正樹¹; ひさき サイエンスチーム¹; HST Cycle 20 GO 13035 team¹; CXO Cycle 15 GO 15100276 team¹ KIMURA, Tomoki^{1*}; BADMAN, Sarah²; TAO, Chihiro³; YOSHIOKA, Kazuo¹; MURAKAMI, Go¹; YAMAZAKI, Atsushi¹; TSUCHIYA, Fuminori⁴; BONFOND, Bertrand⁵; KRAFT, Ralph⁶; ELSNER, Ronald⁸; BRANDUARDI-RAYMONT, Graziella⁷; GLADSTONE, Randy⁹; FUJIMOTO, Masaki¹; HISAKI, Science team¹; HST, Cycle 20 go 13035 team¹; CXO, Cycle 15 go 15100276 team¹

¹(独) 理化学研究所 仁科加速器研究センター, ²Department of Physics, Lancaster University, UK, ³Institut de Recherche en Astrophysique et Planetologie, France, ⁴Planetary Plasma and Atmospheric Research Center, Tohoku University, Japan, ⁵Laboratoire de Physique Atmospherique et Planetaire, Universite de Liege, Belgium, ⁶High Energy Astrophysics Division, Harvard-Smithsonian Center for Astrophysics, US, ⁷Mullard Space Science Laboratory, University College London, UK, ⁸NASA Marshall Space Flight Center, Space Science Office, US, ⁹Department of Space Studies, Southwest Research Institute, Boulder, Colorado, US

¹RIKEN Nishina Center for Accelerator-Based Science, ²Department of Physics, Lancaster University, UK, ³Institut de Recherche en Astrophysique et Planetologie, France, ⁴Planetary Plasma and Atmospheric Research Center, Tohoku University, Japan, ⁵Laboratoire de Physique Atmospherique et Planetaire, Universite de Liege, Belgium, ⁶High Energy Astrophysics Division, Harvard-Smithsonian Center for Astrophysics, US, ⁷Mullard Space Science Laboratory, University College London, UK, ⁸NASA Marshall Space Flight Center, Space Science Office, US, ⁹Department of Space Studies, Southwest Research Institute, Boulder, Colorado, US

From January to April 2014, two observing campaigns by multi-wavelength remote sensing from X-ray to radio were performed to uncover energy transport process in Jupiter's plasma environment using space telescopes and ground-based facilities. These campaigns were triggered by the new Hisaki spacecraft launched in September 2013, which is an extremely ultraviolet (EUV) space telescope of JAXA designed for planetary observations.

In the first campaign in January, Hubble Space Telescope (HST) made imaging of far ultraviolet (FUV) aurora with a high special resolution (0.08 arcsec) through two weeks while Hisaki continuously monitored aurora and plasma torus emissions in EUV wavelength with a high temporal resolution (more than 1 min). We discovered new magnetospheric activities from the campaign data: e.g., internally-driven type auroral brightening associated with hot plasma injection, and plasma and electromagnetic filed modulations in the inner magnetosphere externally driven by the solar wind modulation.

The second campaign in April was performed by Chandra X-ray Observatory (CXO), XMM newton, and Suzaku satellite simultaneously with Hisaki. Relativistic auroral accelerations in the polar region and hot plasma in the inner magnetosphere were captured by the X-ray space telescopes simultaneously with EUV monitoring of aurora and plasma torus. Auroral intensity in EUV indicated a clear periodicity of 45 minutes whereas the periodicity was not evident in X-ray intensity although previous observations by CXO indicated clear 40-minute periodicity in the polar cap X-ray aurora.

In this presentation, we show remarkable scientific results obtained these campaigns.