小惑星ベスタにおけるダイオジェナイト形成の為の結晶化・冷却条件

Crystallization and cooling conditions for the diogenite formation in the turbulent magma ocean of the asteroid 4 Vesta

川畑 佑典 \(^1\)；永原 裕子 \(^1\)
KAWABATA, Yusuke \(^1\)；NAGAHARA, Hiroko \(^1\)

\(^1\) 東京大学大学院理学系研究科地球惑星科学専攻
Earth and Planetary Science, The University of Tokyo

The asteroid 4 Vesta has been completely differentiated to core and mantle despite its small size, of which surface materials are howardite-eucrite-diogenite (HED) meteorites that we know the detailed petrology, and therefore, is a good target for understanding differentiation of terrestrial planets. A new differentiation model for crust formation was developed by taking magma ocean fluid dynamics, chemical equilibrium, presence of \(^{26}\)Al, and cooling into consideration with special care to crystal separation. The role of crystal size, thickness of the conductive lib, and fO\(_2\) are evaluated as parameters. Large crystals (1cm) settle and form a km-thick cumulate layer of orthopyroxene with Mg\# of 0.70-0.90 in 20 thousand years, which almost agrees with the Mg\# of diogenites, whereas thinner layers are formed if the grain size is smaller.

キーワード: マagmaオーシャン, 小惑星ベスタ, HED 隕石
Keywords: magma ocean, Asteroid 4 Vesta, HED meteorites