コクチェタフ産マイクロダイヤモンド中の炭素包有物の発見—超高圧変成作用起源 のダイヤモンド形成に伴う sp 2 結合炭素の介在
 Diamond formation through intermediate sp2 carbon from fluid in dolomite marble dur－ ing the Kokchetav UHP metamorphism

三浦 将 ${ }^{1 *}$ ；小笠原 義秀 ${ }^{1}$
MIURA，Sho ${ }^{1 *}$ ；OGASAWARA，Yoshihide ${ }^{1}$
${ }^{1}$ 早稲田大学地球科学教室
${ }^{1}$ Department of Earth Sciences，Waseda University

Graphitic carbon inclusions were discovered inside microdiamond grains in dolomite marble from the Kokchetav Massif．The discovered inclusions are $s p^{2}$ carbon species and are probably relics of an intermediate metastable phase for diamond formation from $\mathrm{H}_{2} \mathrm{O}$－rich fluid during UHP metamorphism；on our previous studies on diamond and graphite，these carbon species are not metamorphic graphite relics，not graphite changed from diamond，and not graphite crystallized from $\mathrm{H}_{2} \mathrm{O}$－rich fluid at later stage．

We examined over 5，000 diamond grains in 40 thin sections of dolomite marbles under a transmission optical microscope．Five $s p^{2}$ carbon inclusions have been discovered in five diamond grains．These host diamond grains are $4-15 \mu \mathrm{~m}$ in diameter．These graphitic carbon inclusions are black under a microscope and their sizes are $1-5 \mu \mathrm{~m}$ across．

The microdiamond in dolomite marble has been classified into S－type，T－type，and R－type grains on the basis of the mor－ phologies［1］，Raman spectra［1］，cathodoluminescence spectra［2］，and carbon isotopic compositions［3］．R－type and the core of S－type formed at $1^{s t}$ stage，and T－type and the rim of S－type crystallized at $2^{\text {nd }}$ stage from $\mathrm{H}_{2} \mathrm{O}$－rich fluid．All $s p^{2}$ carbon inclusions were found only in the rim of S－type（one grain）and T－type（four grains）．

Using multilayered 2D Raman mappings at different focal depths with solid－state laser（ 487.9 nm ）， Ar^{+}laser（ 514.5 nm ），and He－Ne laser（ 632.8 nm ），the Raman spectra of the examined graphitic carbon inclusions show a peak at ca． $1580 \mathrm{~cm}^{-1}$（assigned to G－band caused by $s p^{2}$ bond of carbon），and these $s p^{2}$ carbon inclusions are completely included inside the host diamond grains．The G－bands of peak position with FWHM for the $s p^{2}$ carbon inclusions are as follows：（the rim of S－type） $1572.0 \mathrm{~cm}^{-1}$ with $17.8 \mathrm{~cm}^{-1}, 1581.3 \mathrm{~cm}^{-1}$ with $17.7 \mathrm{~cm}^{-1}$ ，and $1576.5 \mathrm{~cm}^{-1}$ with $16.5 \mathrm{~cm}^{-1}$ ；（T－type） $1574.9-1584.0 \mathrm{~cm}^{-1}$ with $18.0-28.3$ cm^{-1} ，1580．3－1587．1 cm^{-1} with 17．3－41．9 cm^{-1} ，and $1581.5-1584.2 \mathrm{~cm}^{-1}$ with $17.7-31.0 \mathrm{~cm}^{-1}$ ．The relative peak intensities of G－band to the host diamond band（ca． $1332 \mathrm{~cm}^{-1}$ ）are less than 10% ，and the strongest G－band peaks were detected at the center of the host diamond grains．The spectra of the inclusions often show disordered graphite bands；D1－band（ca． $1360 \mathrm{~cm}^{-1}$ ） and D2－band（ca． $1620 \mathrm{~cm}^{-1}$ ），but these bands are usually weak rather than G－band．

The discovered $s p^{2}$ carbon inclusions were formed at the $2^{\text {nd }}$ stage of the diamond formation，and could be relics of an inter－ mediate metastable phase precipitated from $\mathrm{H}_{2} \mathrm{O}$－rich fluid and followed by the transformation to diamond．This interpretation is consistent with the previous studies of diamond synthesis using C－O－H fluid at diamond stability fields（e．g．［4］）．

References

［1］Ishida，H．，Ogasawara，Y．，Ohsumi，K．，Saito，A．，2003，Journal of Metamorphic Geology，Vol．21，p．515－522．
［2］Yoshioka，N．，Ogasawara，Y．，2005，International Geology Review，Vol．47，p．703－715．
［3］Imamura，K．，Ogasawara，Y．，Yurimoto，H．，Kusakabe，M．，2013，International Geology Review，Vol．55，p．453－467．
［4］Akaishi，M．，Shaji，K．，Yamaoka，S．，2001，Fluid／Slab／Mantle Interactions and Ultrahigh－P Minerals，UHPM Workshop 2001，Waseda University，p．26－30（1A06）．
Keywords：microdiamond，sp2 carbon inclusion，diamond formation，intermediate metastable phase，H2O－rich fluid，Kokchetav UHP metamorphism

