Incoming materials for an erosional subduction zone, offshore Osa Peninsula, Costa Rica

KAMEDA, Jun1∗; HARRIS, Robert2; SHIMIZU, Mayuko3; UJIIE, Kohtaro4; TSUTSUMI, Akito5; IKEHARA, Minoru6; UNO, Masaoki7; YAMAGUCHI, Asuka8; HAMADA, Yohei9; NAMIKI, Yuka5; KIMURA, Gaku10

1Hokkaido University, 2Oregon State University, 3Japan Atomic Energy Agency, 4University of Tsukuba, 5Kyoto University, 6Kochi University, 7Tohoku University, 8University of Tokyo, 9Japan Agency for Marine-Earth Science and Technology, 10University of Tokyo

Bulk mineral assemblages of sediments and igneous basement rocks on the incoming Cocos Plate at the Costa Rica subduction zone were examined by X-ray diffraction (XRD) analyses on core samples. These samples are from Integrated Ocean Drilling Program (IODP) Exp. 334 reference Site U1381, ~5 km seaward of the trench, cored as part of the Costa Rica Seismogenesis Project (CRISP).

Drilling recovered approximately 100 m of sediment and 70 m of igneous oceanic basement. The sediment includes two lithologic units: hemipelagic clayey mud (unit 1) and siliceous to calcareous pelagic ooze (unit 2). The hemipelagic unit is composed of clay minerals (~50 wt.%), quartz (~5 wt.%), plagioclase (~5 wt.%), calcite (~15 wt.%) and ~30 wt.% of amorphous materials, while the pelagic unit is mostly made up of biogenic amorphous silica (~50 wt.%) and calcite (~50 wt.%). The igneous basement rock is composed of plagioclase (~50-60 wt.%), clinopyroxene (~>25 wt.%), and saponite (~15-40 wt.%). Saponite is more abundant in pillow basalt than in the massive section, reflecting the variable intensity of alteration. Fluid expulsion models show that sediment compaction during shallow subduction causes the release of pore water while peak mineral dehydration occurs at temperatures of approximately ~100 °C. The subducting sediment has the potential to generate fluid overpressure at distances of between 5 and 70 km landward of the trench.

Keywords: erosional subduction zone, CRISP, XRD