Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan) ©2015. Japan Geoscience Union. All Rights Reserved.

SSS29-P12

会場:コンベンションホール

JFAST コアサンプルの摩擦実験結果を用いた地震サイクルシミュレーション Earthquake sequence simulations using measured frictional properties for JFAST core sample

野田 博之¹*; 澤井 みち代²; 芝崎 文一郎³ NODA, Hiroyuki¹*; SAWAI, Michiyo²; SHIBAZAKI, Bunichiro³

1海洋研究開発機構,2広島大学,3建築研究所

¹JAMSTEC, ²Hiroshima University, ³Building Research Institute

Parameters in a rate- and state-dependent friction law (RSF) are often determined by velocity-step tests in which the slip rate V is stepped typically by a factor of 3 to 10. The test may yield a set of parameter values such as a, b, and d_c , but it is often the case that those determined parameters depend on V if a logarithmically wide range of V is investigated. At this point, the originally assumed constitutive law is shown to be invalid, strictly speaking, and thus need to be modified. For example, the experiments by Dieterich [1978] show that the rate-dependency $\partial f_{ss}/\partial \ln(V)$ increases as V increases, which can be explained by introduction of a cut-off time for healing [Okubo, 1989]. Such a proposal of a new constitutive law with a corresponding microphysical interpretation is a great advance in technology which enables us to implement a complex rate-dependency into earthquake sequence simulations, as well as in understanding of physics of rock friction and earthquake generation process. However, not all experimental data showing complex rate-dependency have been digested and implemented in a rate- and state-dependent framework. In this study, we propose a simple modification to the logarithmic RSF which enables implementation of rate-dependencies ($\partial f/\partial \ln(V)$) and $\partial f_{ss}/\partial \ln(V)$) that change with $\ln(V)$.

Sawai et al. [2014, AGU fall meeting] conducted a series of velocity-step tests with a core sample obtained in JFAST project at 50 MPa effective normal stress σ_e , 50 MPa pore water pressure, various temperatures T from 20 °C to 200 °C, and V from 0.3 to 100 μ m/s. They found that with increasing V, the rate-dependency $\partial f_{ss}/\partial \ln(V)$ increases from negative to positive at T = 20 °C, decreases from positive to negative at T = 100 °C and 150 °C, and decreases more remarkably but stays positive in the studied range of V at T = 200 °C. In order to account for these complex rate-dependencies, we modified the logarithmic RSF to a quadratic form:

 $f = f_0 + F_1 L_V + F_2 L_V^2 + G_1 L_W + G_2 L_W^2$

where $L_V = \ln(V/V_0)$ and $L_W = \ln(d_c/V_0\theta)$, f_0 is a reference friction coefficient at a reference slip rate V_0 , F_1 , F_2 , G_1 , and G_2 represent rate-dependencies which are assumed to be given by quadratic functions of ambient temperature T, and θ is the state variable representing recent slowness which evolves with a characteristic slip d_c :

 $d\theta/dt = 1$? $V\theta/d_c$.

Note that at a steady-state, $L_V = L_W$ and

 $f_{ss} = f_0 + (F_1 + G_1)L_V + (F_2 + G_2)L_V^2.$

This is a generalization of the aging law, the original version corresponding to $F_1 = a$, $F_2 = 0$, $G_1 = -b$, and $G_2 = 0$. We determined the rate-dependency functions by least-squares method from the experimental data by Sawai et al. [2014], and investigated the consequence by means of dynamic earthquake sequence simulations [e.g., Lapusta et al., 2003].

In preliminary simulations, we simulated earthquake sequences on a planer fault in 2-D (mode II) problems with depthdependent T, depth-dependent σ_e , and a rotation axis to mimic intersection of the fault plane and the surface. Distributions of T and σ_e are determined to be consistent with the heat-flow measurement and modeling by Gao and Wang [2014].

Without additional complexity such as patch-like asperities and high-velocity weakening (e.g., thermal pressurization of pore fluid [Noda and Lapusta, 2013]), earthquakes are nucleated at about 30?50 km downdip from the trench where $\partial f_{ss}/\partial \ln(V)$ is negative regardless of V, and rupture only the shallowest part of the plate interface. The nucleation is preceded by slow slip in the shallower part of the plate interface where $\partial f_{ss}/\partial \ln(V)$ changes its sign with increases V and thus spontaneous acceleration to coseismic slip rate cannot occur. Effect of thermal pressurization and interaction of the system with embedded rate-weakening patches generating earthquakes shall be discussed in the presentation.

キーワード: 地震サイクル, 摩擦構成則, 数値シミュレーション, 摩擦実験 Keywords: Earthquake cycle, Friction constitutive law, Numerical simulation, Friction experiment