Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan) ©2015. Japan Geoscience Union. All Rights Reserved.

U06-P07

会場:コンベンションホール

時間:5月24日18:15-19:30

静岡県竜ヶ岩洞の滴下水中 dead 炭素率の季節変動 Seasonal variation of dead carbon fraction in dripwater in the Ryugashi Cave, Shizuoka Prefecture, Japan

南 雅代¹*;加藤 ともみ²;堀川 恵司³;中村 俊夫¹ MINAMI, Masayo¹*; KATO, Tomomi²; HORIKAWA, Keiji³; NAKAMURA, Toshio¹

¹名古屋大学年代測定総合研究センター, ²名古屋大学大学院環境学研究科, ³富山大学大学院理工学研究部 ¹Center for Chronological Research, Nagoya University, ²Graduate School of Environmental Studies, Nagoya University, ³Department of Environmental Biology and Chemistry, Toyama University

Stalagmite is a cave deposit precipitated from dripwater. Dripwater contains some dead carbon derived from carbonatedissolved CO₂ through interaction with cave bedrock limestone, which will make the ¹⁴C ages of the stalagmite older, and so a correction of the dead carbon fraction (DCF) is needed for ¹⁴C dating of stalagmites. In this study, we investigated seasonal variation in ¹⁴C in dripwater in the Ryugashi Cave, Shizuoka Prefecture, to examine the DCF stability in a stalagmite. The results show that ¹⁴C concentration in dripwater was different depending on the site in the Ryugashi Cave, and that the ¹⁴C showed similar seasonal variations at all sites: lower in fall and winter, while higher in spring and summer, though the extent of the seasonal variations was different by site. The ¹⁴C concentration in dripwater tended to be higher (DCF tends to be lower) in dripwater with lower drip rate, indicating that the ¹⁴C in dripwater was correlated with the drip rate, and also correlated with rainfall amount around the Ryugashi Cave.

A growing stalagmite collected from a site in the Ryugashi Cave showed a roughly constant DCF (around 12%) compared with the ¹⁴C with the IntCal13 calibration curve, though the DCF was slightly fluctuated in detail. The results indicate that high-resolution ¹⁴C measurement can be performed on stalagmites in the Ryugashi Cave, and further that the DCF fluctuation observed for stalagmites could give information on change of paleo-rainfall amount. Based on the scenario that the increase in rainfall amount brings the increase in drip rate of dripwater, followed by the increase in soil-derived carbon fraction in dripwater, further followed by the ¹⁴C increase (DCF decrease) in dripwater, the reconstruction of precipitation could be performed using DCF variation in a stalagmite.

キーワード: 滴下水, 石筍, 放射性炭素 Keywords: dripwater, stalagmite, radiocarbon