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Exploration of basal condition in winter by numerical glacier hydrological model
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Ice surface speed is a combination of ice deformation and basal sliding (including sediment
deformation under the glacier). Well-known spring/summer speed-up cannot be explained by ice
deformation and can only be induced by basal sliding. Faster basal sliding is attributed to higher
basal water pressure, which reduces the effective pressure (ice-overburden pressure minus basal
water pressure) and lubricates the interface between ice and bed. Many observations and modeling
have been performed so far, and basal condition plays a key role in driving seasonal changes in ice
speed.

Applying offset tracking method to satellite radar images, we found winter speed-up signals of
surge-type glaciers at two distinct setting, Yukon Territory in Canada (Abe and Furuya, 2015) and
West Kunlun Shan, in Northwestern Tibet (Yasuda and Furuya, 2015). In Yukon, the winter speed-up
from fall to winter was seen at many surge-type glaciers during their quiescent phases. In West
Kunlun Shan, seasonal modulations were identified at two active surging glaciers, which are faster
from fall to winter and slower from spring to summer. These findings tell us that we have to
consider some mechanisms that can increase basal water pressure even at low water flux in winter.
Werder et al (2013) developed the 2D subglacial drainage system model (GlaDS), which consists of
R-channel conduit and distributed cavity system. Using this model, we have examined how the
drainage system evolves from spring to summer, and how it does in the following winter, as well as
effective pressure changes. We could show that the effective pressure drops at the same time as the
onset of meltwater input. After that, the subglacial drainage system evolves and reaches a steady
state. Immediately after the onset of the melting season, spring/summer speed-up event occurs. At
the end of the season, when meltwater input ceases, the effective pressure remains a high value in
winter. This is because there is no water input and the channels close due to creep closure.

In our presentation, we will show the time evolution of the drainage system during melting season,
and discuss how it does in winter with some assumptions.
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The regions of high-mountains are frequently called ‘‘water towers’’ for the lowlands and a precise
knowledge of the characteristics is required for their proper management. The glaciers provide
water by melt down not only to the people living close to the mountains but also contribute runoff
to the lowlands and recharge the river fed aquifers and finally effect the global sea level change.
After Alaska and Arctic regions, the Karakorum-Himalaya (K-H) area constitutes the second largest
glacial cover of the Earth. The Karakoram glaciers are fed by precipitation and avalanche. Based on
previous studies, surges and slight gain in the mass of central Karakorum glaciers has been
reported. The surges of individual glaciers are generally out of phase, indicating a limited
climatic control on their dynamics. In the present research, the focus is to observe the effect of
seasons and earthquake events on the glacial dynamics, in this region.
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Remote sensing observations for a catastrophic avalanche collapse in Langtang induced by
the Gorkha, Nepal earthquake
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Characteristics of cryoconite on the Lewis Glacier in Mt.Kenya Africa
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The cell morphology and pigment composition of red snow algae in Japanese and Alaskan
mountain ranges
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Can snow impurities be detected on Greenland ice sheet by satellite remote sensing?
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Warren (2013) pointed out that attempts to use satellite remote sensing to estimate the black
carbon (BC) content of snow are unlikely to be successful, except in highly polluted industrial
regions, with the reasons as follows. The possible albedo reductions for the shortwave and visible
wavelengths due to the typical concentration of BC (3-30 ppbw) in remote areas of the Northern
Hemisphere are 0-1 % and 0-2 %, respectively for cold fine-grained snow, and 0-3% and 1-6%,
respectively for melting snow. Compareing to these small albedo reductions typical errors in
surface albedo inferred from satellite measurements are comparable (a few percent), which are
attributed to uncertainties of undetected thin clouds, atmospheric aerosols, vertical profile of
snow grain size, surface roughness, and subpixel heterogeneity of the thin and patchy snow cover as
well as satellite sensor calibaration and bidirectional reflectance distribution function (BRDF)
model of snow surface used in the retrieval algorithm.

We are challenging to develop the satellite remote sensing algorithm to retrieve snow impurities on
Greenland ice sheet (GrIS) to estimate the possible contribution to the recent albedo reduction.
The algorithm is based on look-up table method in which BRDFs are tabled as functions of solar and
satellite zenith angles and relative azimuth angle, snow impurity concentration and snow grain
size. Our algorithm employed a two-snow layer model by which the effect of vertical inhomogeneity
of the snow parameters is taken into account. To examin the possibility of satellite remote sensing
of snow impurities with our algorithm on GrIS, we estimated the albedo reduction due to BC on GrIS
with physically based snow albedo model (Aoki et al., 2011). The albedo reduction for melting snow
for the BC concentration range previously measured (0.55-20 ppbw) on GrIS is 0.02-2.6% and
0.03-4.8% for the shortwave and visible wavelengths, respectively. On GrIS there are no
uncertainties of subpixel heterogeneity of the thin and patchy snow cover. The surface roughness is
also very small in summer season over acculuration area on the ice sheet. The atmospheric aerosols
effect are generally small. Hence, the major uncertainties are satellite sensor calibaration, thin
cloud effect, and BRDF model used in the algorithm. These issues were improved by employing the
latest MODIS (6 data set, new cloud detection algorithm (Chen et al., 2014), and Voronoi snow shape
model for BRDF calculation in our algorithm. The retrieval results of monthly mean BC-equivalent
concentration of snow impurities from 2000 to 2015 on GrIS in summer season were 8-34 ppbw which
are same or somewhat higher than the previous in-situ measurements (0.55-20 ppbw). However, those
in spring reason were too high (29-383 ppbw) compared to the in-situ measurements. The inter-annual
trend of the concentration in summer was small increase of 10-30%/decade. From this result, there
is a possibility to detect snow impurity on GrIS in summer season by satellite remote sensing.
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Metamorphism of layered firn at Dome Fuji, Antarctica: Evolution of relations between
Near-infrared reflectivity and the other textural/chemical properties
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In order to model the thermal structure of polythermal ice sheets accurately, energy-conserving
schemes and correct tracking of the cold-temperate transition surface (CTS) are necessary. We
compare four different thermodynamics solvers in the ice sheet model SICOPOLIS (www.sicopolis.net).
Two exist already, namely a two-layer polythermal scheme (POLY) and a single-phase cold-ice scheme
(COLD), while the other two are newly-implemented, one-layer enthalpy schemes, namely a
conventional scheme (ENTC) and a melting-CTS scheme (ENTM) (Blatter and Greve, 2015, Polar Sci. 9,
196-207). The comparison uses two scenarios of the EISMINT Phase 2 Simplified Geometry Experiments
(Payne and others, 2000, J. Glaciol. 46, 227-238), one with no-slip conditions at the base and one
with basal sliding. In terms of temperate ice layer thickness, CTS positioning and smoothness of
temperature profiles across the CTS (a requirement for the assumed case of melting conditions), the
POLY scheme performs best, and thus its results are used as a reference against which the
performance of the other schemes is tested. Both the COLD scheme and the ENTC scheme fail to
produce a continuous temperature gradient across the (TS, and both overpredict temperate ice layer
thicknesses to some extent (the COLD scheme more). In the ENTM scheme, a continuous temperature
gradient is explicitly enforced. This scheme is more precise than ENTC for determining the position
of the (TS, while the performance of both schemes is good for the temperature/water-content
profiles in the entire ice column. Therefore, the one-layer enthalpy schemes ENTC and ENTM are
viable, easier implementable alternatives to the POLY scheme with its need to handle two different
numerical domains for cold and temperate ice.

Keywords: Ice sheet, Thermodynamics, Polythermal ice, Enthalpy method, Modeling
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Accuracy of the SMAP model-simulated snow density, temperature, and grain shapes at
Sapporo, Japan
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A multi-layered physical snowpack model has a special feature that it can calculate temporal
evolution of detailed snow internal stratigraphy. This characteristic is a considerable advantage
of such a model, because it is impossible for a typical land surface model to simulate realistic
layer structure of the snowpack. In the present study, we evaluated a 1-D multilayered physical
snowpack model SMAP (Snow Metamorphism and Albedo Process) in terms of snow density, temperature
and grain shapes using in-situ data obtained at Sapporo (43°@5'N, 141°21'E, 15 m a.s.1.), Japan
from the 2005 to 2015 winters (November to April). The model was driven by quality controlled
30-min averaged data for air temperature, relative humidity, wind speed, surface pressure, snow
depth, liquid precipitation, downward and upward shortwave radiant flux, downward longwave radiant
flux, and ground surface soil heat flux measured with an AWS installed at Sapporo.

Before investigating accuracy of the model-simulated snow internal physical properties, the SMAP
model was evaluated in terms of column-integrated snow water equivalent (SWE) and snow surface
temperature in order to check the mass and surface energy balances are calculated adequately. At
Sapporo, SWE data was obtained by snow pit measurements, while snow surface temperature was
observed with the AWS. Comparison of observed and simulated column-integrated SWE revealed that the
model tended to underestimate SWE (mean error; ME was -19 mm); however, root mean square error
(RMSE) was 34 mm, and these scores are better than those for simulations driven by not snow depth
but precipitation (ME was less than -25 mm and RMSE was more than 4@ mm). It suggests that the
correction technique for precipitation measurements considering catch efficiency of a rain gauge is
still insufficient. As for snow surface temperature simulated by the SMAP model, systematic
overestimation nor underestimation was not found (ME = ©.4 2C), and obtained RMSE was also in a
sufficiently low (1.6 2C). Overall, these results assure that the mass and surface energy balances
of the snowpack at Sapporo were modeled and calculated reasonable enough by the SMAP model.

In the model validation in terms of snow internal physical properties, accuracy of the
model-simulated snow density and temperature were investigated first using the in-situ measured
data from snow pit works. Validation results indicated that the model tended to underestimate snow
density (ME = -51 kg m>) and overestimate snow temperature (ME = 0.4 2C); however, RMSE for both
properties were sufficiently small (88 kg m™ and 1.6 C, respectively). In order to permit higher
precision of the model, it would be necessary to develop physically based schemes for new snow
density and effective thermal conductivity of the snowpack. Next, snow grain shapes simulated by
the SMAP model was evaluated using the manually measured data obtained from snow pit works. During
accumulation period (November to February), precipitation particles, decomposing and fragmented
precipitation particles, rounded grains, and melt forms were mainly observed at Sapporo. Generally,
they were stratified from the surface to the bottom of the snowpack. On the other hand, during
ablation period (March and April), melt forms were principally observed in the snowpack every
winter period. Basically, these above mentioned features could be reproduced by the model; however,
faceted crystals and depth hoar, which are generally developed through the temperature gradient
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metamorphisms, were not simulated by the model at all. It suggests that improving physical
processes under the temperature gradient metamorphism, and reconsidering the method to diagnose
snow grain shape from snow physical properties such as geometric grain size and water content are
quite necessary.

F—"T—K : the SMAP model. FEEZXRE. BEYES
Keywords: the SMAP model, snow metamorphism, snow internal physical properties
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Measurements of the coefficient of dynamic friction for Cross-country skiing
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