メタロイド微生物変換機構の多様性と環境動態における影響

Diversity of microbial metalloid transformation pathways and its geochemical implications

- *濱村 奈津子1、光延 聖2
- *Natsuko Hamamura¹, Sathoshi Mitsunobu²
- 1. 九州大学大学院理学研究院 生物科学部門、2. 愛媛大学農学部
- 1.Dept. Biology, Faculty of Science, Kyushu University, 2.Faculty of Agriculture, Ehime University

Arsenic (As) and antimony (Sb) are both naturally occurring toxic elements and are considered to be priority pollutants of interest by the USEPA. Although the concentrations of these toxic metalloids in natural systems are generally low (~15 μ g g⁻¹ As and <1 μ g g⁻¹ Sb in soils [1]), the elevated levels of As and Sb have been released via natural processes and human activities. Antimony is commonly associated with As in the environment and both elements have similar chemistry and toxicity. Antimony and arsenic can exist in four oxidation states (-III, 0, III and V), while they are mainly found in two oxidation states, trivalent (III) and pentavalent (V) in natural systems. Antimonate [Sb(V)] and arsenate [As(V)] are the thermodynamically stable species in aerobic environments and occur primarily as $H_2AsO_4^-$ and $HAsO_4^{-2-}$, or $Sb(OH)_6^-$. In anaerobic environments, the dominant solution species of antimonite [Sb(III)] and arsenite [As(III)] occur as the neutral $Sb(OH)_3^{-0}$ and $As(OH)_3^{-0}$ at the environmentally relevant pH range. As(III) and Sb(III) are considered more toxic than As(V) and Sb(V) [1].

Despite its toxicity, microorganisms have developed mechanisms to tolerate and utilize these elements for respiratory metabolism. Although many microorganisms have been identified to catalyze As transformations, we have just began to unveil the full diversity of microbial processes associated with As and Sb geochemical cycling in the environment. In this study, we characterized metalloid transformation pathways associated with As and Sb-impacted environments. The presence of indigenous microbial populations capable of metalloids transformation was examined by using both molecular approach targeting As functional genes and cultivation approach. The genes coding for arsenite oxidase (aioA), which catalyzes the oxidation of As(III) coupled to O_2 reduction, have been recovered from soils from mine tailing. Successful cultivation of various As(III)-oxidizing bacteria confirmed the microbial attribute in As oxidation. In contrast, diverse sequences of anaerobic arsenite oxidase (arx) and arsenate respiratory reductase (arr) genes were detected from the As impacted lake sediments, while no aio genes were recovered. The anaerobic arsenite oxidase, Arx, is known to catalyze arsenite-oxidation coupled to nitrate reduction or photosynthesis. Consistent with the molecular analysis, an anaerobic arsenite-oxidizing nitrate reducer and an arsenate-reducing bacterium were isolated from the lake sediments. The indigenous microbial population associated with Sb transformation was also identified by successful cultivation of aerobic Sb(III)-oxidizing Pseudomonas- and Stenotrophomonas-related isolates from the mine tailing soils. In addition, anaerobic enrichment cultures capable of reducing Sb(V) were also obtained, in which the precipitation of antimonite as antimony trioxide was observed.

This study revealed the diversity and distribution of microbial metalloid redox metabolisms associated with the polluted environments, indicating their contribution to the speciation and mobility of As and Sb *in situ*.

[1] M. Filella, N. Belzile, Y.-W. Chen. Earth Sci. Rev. 57:125-176. (2002)

キーワード:ヒ素、アンチモン、ヒ素酸化酵素、ヒ酸還元酵素

Keywords: Arsenic, Antimony, arsenite oxidase, arsenate reductase

付加体の深部帯水層における $\mathrm{CH_4} \subset \mathrm{N_2}$ の生成プロセスの地域特性 Regional variation of $\mathrm{CH_4}$ and $\mathrm{N_2}$ production processes in the deep aquifers of an accretionary prism

*松下 慎¹、石川 修伍²、平田 悠一郎²、眞柄 健太²、木村 浩之³ *Makoto Matsushita¹, Shugo Ishikawa², Yuichiro Hirata², Kenta Magara², Hiroyuki Kimura³

- 1.静岡大学創造科学技術大学院環境・エネルギーシステム専攻、2.静岡大学総合科学技術研究科、3.静岡大学グリーン科学技術研究所
- 1.Department of Environment and Energy Systems, Graduate school of science and technology, Shizuoka university, 2.Department of sciences, Graduate school of integrated science and technology, Shizuoka university , 3.Research Institute of Green Science and Technology, Shizuoka University

天然ガス田やメタンハイドレードに代表される地下圏において生成されるメタンは大気中に放出されることで温暖化を促進させる温室効果ガスである一方、エネルギー資源としての利用が期待されている。そのため、地下圏におけるメタン生成プロセスの把握は重要な研究課題であるといえる。地下圏で生成されるメタンの起源として、堆積層に含まれる有機物が熱によって分解され、メタンが生成される熱分解起源と、メタン生成菌による微生物起源の2つが主に知られている。現在までに行われた研究によって、油田やガス田、海底堆積物中などに存在するメタンの生成プロセスが解明されてきた。また、西南日本をはじめ、台湾、インドネシア、ペルー、チリ、ニュージーランド、米国ワシントン州、米国アラスカ州などの世界中の国や地域に分布が見られる付加体の地下圏においても大量のメタンの存在が報告されている。

付加体は、プレートテクトニクスによってプレートの沈み込みが起きている海溝において形成される厚い堆積層である。この堆積層は、海洋プレートが陸側プレートの下に沈み込む際に、海洋プレート上部の海底堆積物がはぎ取られ、陸側プレートに付加することによって形成される。そのため、海底堆積物に由来する豊富な有機物が堆積層中に含まれている。西南日本の太平洋沿岸の広い地域には深さ10 km以上にわたって付加体の堆積層が分布している。この堆積層は透水性の高い砂岩の層を含むことから、天水または海水に由来する地下水が嫌気的に貯留された深部帯水層が存在している。さらに、この深部帯水層には嫌気性地下水と共に、メタンや窒素ガス(N₂)を主成分とする水溶性天然ガスが豊富に存在することが報告されている。しかし、付加体の深部帯水層におけるメタンとN₂の生成プロセスに関する知見はほとんど得られていない。そこで、本研究では付加体が分布する静岡県中西部の太平洋沿岸部から山間部の地域に構築された14か所の大深度掘削井において、深部帯水層に由来する嫌気性地下水と地下水に付随する付随ガスを採取した。そして、付随ガスの組成分析、及び炭素安定同位体比分析により、深部帯水層に存在するメタンの起源推定を行った。さらに、地下水に含まれる微生物群集を対象としたメタ165 rRNA遺伝子解析及び嫌気培養を実施し、深部帯水層におけるメタン生成プロセス及びN₂生成プロセスの解明を試みた。

付随ガスの組成分析を行った結果、太平洋沿岸部に位置するサイトと、沿岸部と山間部の中間に位置するサイトから採取した付随ガスにはメタンが96%以上含まれていることが明らかになった。一方、山間部に位置するサイトから採取した付随ガスには、メタンと共に $20\sim50\%$ の割合で N_2 が含まれていた。付随ガス中のメタンと地下水中の溶存無機炭素の炭素安定同位体比分析の結果、沿岸部のサイトでの付随ガスには有機物の熱分解起源のメタンが、中間部と山間部のサイトでの付随ガスには微生物起源のメタンが主に含まれていることが示唆された。地下水中の微生物群集を対象としたメタ16S rRNA遺伝子解析の結果、Methanobacterialesや

Methanomicrobialesに属する水素資化性メタン生成菌、FirmicutesやBacteroidetesに属する発酵細菌、

Betaproteobacteriaに属する脱窒細菌が優占することが確認された。また、中間部と山間部のサイトから採取した地下水に有機基質を添加した嫌気培養を実施した結果、水素発生型発酵細菌と水素資化性メタン生成菌の共生による高いメタン生成ポテンシャルが確認された。さらに、山間部のサイトから採取した地下水に、有機基質と共に脱窒の電子受容体である $N0_3$ 。または $N0_2$ で添加して嫌気的に培養を行った結果、微生物の脱窒による高い N_3 生成ポテンシャルが示された。

本研究の結果より、西南日本の太平洋沿岸部の付加体の深部帯水層では、有機物の熱分解によるメタン生成が行われていることが示唆された。一方、中間部と山間部の付加体の深部帯水層では、水素発生型発酵細菌と水

素資化性メタン生成菌が共生することで、堆積層に含まれる有機物が分解され、メタンが生成されていることが明らかとなった。また、山間部の付加体の深部帯水層では、微生物群集によるメタン生成と同時に、微生物の脱窒による N_2 生成が行われている可能性が示された。

キーワード:付加体、深部帯水層、メタン生成菌、発酵細菌、脱窒

Keywords: accretionary prism, deep aquifer, methanogens, fermentative bacteria, denitrification

沖縄本島南部に分布する付加体の深部帯水層におけるメタン生成メカニズム Evidence of microbial methane generation in the deep aquifer of accretionary prism in southern Okinawa Island, Japan

- *眞柄 健太1、松下 慎2、石川 修伍3、平田 悠一郎1、木村 浩之4
- *Kenta Magara¹, Makoto Matsushita², Shuugo Ishikawa³, Yuichiro Hirata¹, Hiroyuki Kimura⁴
- 1.静岡大学理学部地球科学科、2.静岡大学創造科学技術大学院環境・エネルギーシステム専攻、3.静岡大学総合科学技術研究科、4.静岡大学グリーン科学技術研究所
- 1.Department of Geoscience Shizuoka, University , 2.Department of Environment and Energy Systems, Graduate school of science and technology, Shizuoka university, 3.Department of science, Graduate school of integrated science and technology, 4.Reserch Institude of Green Science and Technology, Shizuoka University

西南日本の太平洋側の地域には付加体と呼ばれる厚い堆積層が分布している。付加体はプレートの収束境界に おいて、海洋プレートが陸側プレートに沈み込む際、海洋プレート上の海底堆積物がはぎ取られ、大陸プ レートの側面に付加することで形成された地質構造である、付加体の堆積層は主に砂層と泥層の互層構造から なり、その地下圏には帯水層が形成されている、そして嫌気状態となった深部帯水層にはメタンを主成分とす る多量の天然ガスが存在している. 静岡, 宮崎, 沖縄に構築された大深度掘削井から揚水される深部地下水の 付随ガスからは高濃度のメタンが検出される、しかし、これらの帯水層の特性はそれぞれ異なる、静岡には天 水の影響を強く受けている帯水層が存在する.宮崎には貫入岩の影響を受けていると予想される深部帯水層が 存在する.そして,沖縄本島は周囲を海に囲まれているため,その深部帯水層は海水の影響を強く受けている と予想される、静岡と宮崎の深部帯水層では、水素発生型発酵細菌と水素資化性メタン生成菌による堆積層中 の有機物の分解を通したメタン生成メカニズムが存在することが報告されている.一方,沖縄本島の深部帯水 層におけるメタン生成メカニズムに関する知見はほとんど得られていない、そこで、本研究では付加体の分布 する沖縄本島南部の4カ所の大深度掘削井にて、深部帯水層に由来する嫌気性地下水と付随ガスを採取し た. そして, 地下水の電気伝導率(EC)と溶存イオン濃度から深部地下水の起源の推定を行った. また, 付随ガ スの組成分析および付随ガス中のメタンと地下水中の溶存態無機炭素の炭素安定同位体比分析から、深部帯水 層に存在するメタンの起源を推定した. さらに,深部地下水に含まれる微生物群集を対象としたメタ16S rRNA遺伝子解析および嫌気培養を行い、沖縄本島南部の深部帯水層におけるメタン生成メカニズムの解明を試 みた.

地下水のECと溶存イオン濃度から、沖縄本島には海水の影響を受けている深部帯水層と、海水と天水の両方の影響を受けている帯水層が存在することが示された。付随ガスの組成分析の結果、全てのサイトでメタンが93 vol%以上含まれていることが明らかとなった。付随ガスに含まれるメタンと地下水に含まれる溶存態無機炭素の炭素安定同位体比分析から、全てのサイトで付随ガスには微生物起源のメタンが含まれていることが示唆された。地下水中の微生物群集を対象としたメタ16S rRNA遺伝子解析では、アーキアにおいて全サイトの地下水でMethanobacterialesに属する水素資化性メタン生成菌が確認された。また、バクテリアではFirmicutesやBacteroidetesに属する発酵細菌が確認された。さらに、地下水に含まれる微生物群集を対象とした嫌気培養を行った結果、全てのサイトで水素発生型発酵細菌と水素資化性メタン生成菌の共生による高いメタン生成ポテンシャルが確認された。

本研究によって、沖縄本島南部に分布する付加体の深部地下圏には海水の影響を強く受けた帯水層と、海水と 天水の両方の影響を受けた帯水層が存在することが示された。また、沖縄本島南部に分布する付加体の深部帯 水層では、水素発生型発酵細菌と水素資化性メタン生成菌の共生による有機物からのメタン生成が行われてい ることが示唆された。さらに、西南日本の広大な地域に分布する付加体の深部帯水層において、地下圏微生物 によるメタン生成が普遍的に行われている可能性が示唆された。

キーワード:付加体、深部帯水層、メタン生成、発酵細菌、メタン生成菌、共生コンソーシア

Keywords: accretionary prism, deep aquifer, methane production, fermentative bacteria, methanogenic archaea, syntrophic consortium

陸棲藍藻 Nostoc sp. HK-01 の乾熱耐性

Dry heat tolerance of a terrestrial cyanobacterium, Nostoc sp. HK-01

- *木村 駿太¹、井上 琴美¹、加藤 浩²、佐藤 誠吾¹、富田一横谷 香織¹
 *Shunta Kimura¹, Kotomi Inoue¹, Hiroshi Katoh², Seigo Sato¹, Kaori Tomita-Yokotani¹
- 1. 筑波大学大学院生命環境科学研究科、2. 三重大学生命科学研究支援センター
- 1.Graduate School of Life and Environmental Sciences, University of Tsukuba, 2.Life Science Research Center, Mie University

陸棲の藍藻(シアノバクテリア)は、太古の地球から炭素・窒素の循環に重要な役割を果たしている。陸棲藍藻は乾燥状態で60~100℃以上の乾熱に耐性を具備することが報告されているが、その耐性のしくみの詳細はまだ明らかにされていない。陸棲藍藻が陸上で生存するために、乾熱耐性は必要不可欠な機能である。我々は、100℃10時間の乾熱耐性が証明されている陸棲藍藻Nostoc sp. HK-01を生物材料として、本藍藻が分化する細胞形態のうち休眠細胞のみが乾熱に耐性を備える細胞形態であることを明らかにしてきた。本発表は、休眠細胞の乾熱耐性のしくみに関わる機能分子の候補について報告し、生物の過酷環境における利用や熱からの細胞保護に貢献する可能性について、展望を述べる。

キーワード:休眠細胞、乾熱耐性、Nostoc sp. HK-01、陸棲藍藻

Keywords: Akinete, Dry heat tolerance, Nostoc sp. HK-01, Terrestrial cyanobacteria

インド洋中央海嶺熱水プルーム中の微生物群集構造

Microbial community succession and hydrogen utilization in hydrogen-gas rich hydrothermal plume of Kairei field, CIR

- *砂村 倫成1、井尻 暁2
- *Michinari Sunamura¹, Akira Ijiri²
- 1.東京大学大学院理学系研究科地球惑星科学専攻、2.海洋研究開発機構
- 1.University of Tokyo Dept. of Earth & Planetary Science, 2.JAMSTEC

Deep sea hydrothermal plume is important interface between solid earth and ocean. In the hydrothermal plume, various and large energy is yielded for chemolithoautotrophic microorganisms through the oxidation-reduction reaction between the reduced chemicals in the hydrothermal fluids and oxygen in the seawater. The microbial community structures varied among different hydrothermal systems (Sunamura and Yanagawa 2015) and epsilon proteobacteria has been specifically detected in the hydrogen-rich hydrothermal plume of Kairei hydrothermal field (KHF). Here, I report the microbial community structure in the hydrothermal plume and statistical analysis based on physical, chemical, and biological parameters in the hydrothermal plume of KHF.

As results, we found 16 microbial families, e.g. *Cenarchaeceae* (Archaea), *Helicobacterceae* (epsilon proteobacteria), SUP05 (gamma proteobacteria), SAR324 (delta proteobacteria), and 3 methylotrophs, in 251 microbial families are determined to be the active and important microbial groups in the hydrothermal plume. Based on the ratio (20/1) of hydrogen and methane gas in the end member fluids of KHF, we estimate the consumed hydrogen gas from the hydrogen and methane gas concentration in each hydrothermal plume samples. The estimated consumed hydrogen gas is strongly correlated with Helicobacterceae population (R=0.65, n=28). Relatives of *Helicobacterceae* are known to utilize hydrogen gas/reduced sulfur compounds as electron donor. Our result suggest the Helicobacterceae in the hydrothermal plume of KHF obtain energy from hydrogen gas and the variation of H2/CH4 ratio in the plume would due to their activity.

キーワード:海底熱水、微生物、水素

Keywords: deep sea hydrothermal plume, microbes, hydrogen gas

猪苗代湖湖底のハイパーピクナル流堆積物 Hyperpycnal sediment in Lake Inawashiro, northeast Japan

*井内 美郎¹、鈴木 勇志¹
*Yoshio Inouchi¹, Takashi Suzuki¹

- 1.早稲田大学人間科学学術院
- 1. Faculty of Human Sciences, Waseda University

猪苗代湖中央部、水深90mの水域で採取された長さ約27mのボーリング試料に挟在する約30の厚さ数センチメートルの明暗層の成因について検討した。猪苗代湖は福島県中央に位置し、湖面積103.24km2、最大水深94.6m、平均水深51.5mの酸栄養湖である。今回採取された試料の主要部は、厚さ数ミリメートルの明暗互層でバーコード状を示している。数層準のテフラ層を挟むほか、数センチメートルの厚さを持ち、下部が白色層からなり上部が暗茶褐色を示す層からなる特徴的な層準が約30確認された。この層準について、5ミリメートル間隔で粒度分析を行ったほか、構成粒子について顕微鏡観察を行った。その結果、この層準は下位で逆級化を示し、上位で正級化を示す共通の現象が確認されたほか、構成粒子では鉱物粒子を主体とするものの植物片や珪藻化石を含んでいることが明らかとなった。珪藻化石については、さらに詳細な検討が必要ではあるが、付着性種および好酸性種を多く含んでいるという特徴がみられた。また、上位の暗茶褐色層が下位の白色層と斜交し、下位層を侵食していると考えられる層準も確認された。なお、通常のバーコード状堆積物に含まれる珪藻化石は、浮遊性種が圧倒的主体を占めていた。以上の特徴は、劇的洪水に起因するハイパーピクナル流堆積物にみられるものであり、猪苗代湖のイベント堆積物はハイパーピクナル流堆積物であるという結論を強く示唆するものである。

キーワード:猪苗代湖、ハイパーピクナル、イベント層、湖底堆積物

Keywords: Lake Inawashiro, hyperpycnal, event sediment, lake bottom sediment

巨大地震後の深海底におけるメタン生成ホットスポットの出現

"Hot spot of methanogeneis" on the deep-seafloor after the mega-erathquake

*田角 栄二 1 、野牧 秀隆 1 、柳川 勝紀 2 、今野 祐多、酒井 早苗 1 、平井 美穂 1 、藤倉 克則 1 、布浦 拓郎 1 、高井 研 1

*Eiji Tasumi¹, Hidetaka Nomaki¹, Katsunori Yanagawa², Yuuta Konno, Sanae Sakai¹, Miho Hirai¹, Katsunori FUJIKURA¹, Takuro Nunoura¹, Ken Takai¹

- 1.国立研究開発法人 海洋研究開発機構、2.九州大学
- 1.Japan Agency for Marine-Earth Science and Technology, 2.Kyushu University

We investigated the deep-sea microbial ecosystem after the 2011 Off Tohoku Earthquake and tsunami. In the series of study, we found several "hot spot of methanogeneis" on the deep-seafloor after the mega-earthquake and demonstrated the methylotrophic methanegenesis in the deep-sea surface sentiment.

On the 2011 cruise, we found a lot of large microbial mats on the 5,000 m-depth deep-seafloor. The surface sediment cores (< 25 cm) were collected from microbial mats and analyzed their chemical and microbial profiles. On the top of the cores (a few centimeters), decomposing dead body of maline lives such as echinoderms that contains trimethylamine N-oxide, a precursor of trimetylamine (TMA), in the body were accumulated. In the surface layer (< 15 cm), high concentration of ammonium, TMA, and isotopically light methane was detected. In this layer, heterotrophic microbes such as Bacteroides, Firmicutes, and Spirochaeta were dominated. These results suggests that huge amount of organic matter had been recently supplied on the deep-seafloor. In addition, a large number of mcrA gene were also detected. Most of which were identified as those of Methanococcoides sp. that can grow on methyl compounds as the sole energy source. From the results of investigation in 2011, we hypothesized that high concentration of methane in the microbial mat sediments were generated by methylotrophic methanogen.

On the 2012 cruise, we conducted in-situ incubation to prove our hypothesis. In-situ incubation cores with ¹³C substrate, ¹³C-bicarbonate, ¹³C-acetate, ¹³C-monomethylamine (MMA) were set on the deep-seafloor where a large microbial mat had been found in 2011 and measured methanogenesis activity. During three days of incubation, significant activity was detected only in the incubation core supplied MMA.

We hope that our results provide important hints to understand the ecology and evolution of methanogenic/methanotrophic archaea in deep-sea environments.

キーワード:深海、メタン生成、巨大地震

Keywords: deep sea, methanogenesis, mega-earthquake