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In order to understand how seismic and volcanic activities occur in the subduction zone, it is
critical to better understand the thermal structure there. Previous studies have shown that many
factors affect the thermal structure including slab velocity, plate age, temperature dependence of
viscosity, viscous anisotropy, complex slab geometry, and slab-mantle coupling. Among these
factors, I focus on slab-mantle coupling in this presentation. It is well known mainly based on the
observed low surface heat flow and low seismic attenuation that the forearc mantle is cold and
rigid. To explain such a “cold corner”, the movement of slab and mantle need to be decoupled down
to a certain depth by a thin, low viscosity layer (LVL) just above the slab so that hot material
does not reach the corner of the mantle wedge. Many numerical studies have investigated the effects
of slab-mantle coupling so far, although very few of them focus on its along-arc change. In this
presentation, I will show how LVL at the plate interface affects the along-arc change in the degree
of slab-mantle coupling.

I construct 3D finite element models to investigate a possible role of LVL in the subduction zone.
The model domain is divided into crust, slab, and mantle wedge that includes LVL just above the
slab. The flow is computed only in the mantle wedge and temperature is computed for the whole model
domain. Buoyancy force is not considered and viscosity is assumed to be temperature and strain rate
dependent except for LVL where it is constant. The model setting is exactly the same in the
along-arc direction.

I find that when the viscosity of LVL is sufficiently low, the degree of slab-mantle coupling
starts to change in the along-arc direction at some point and 3D flow and thermal structure
develop. Temperature dependence of viscosity may be a key factor in producing such a feature. I
also find that a thicker LVL leads to a longer wavelength of the 3D flow, and a deeper down-dip
limit of LVL leads to a delayed onset of the 3D flow. In order to explain the spatial distribution
of Quaternary volcanoes in Northeast Japan with this model, the viscosity and thickness of LVL need
to be <5x10"™ Pa.s and ~6 km, respectively. These results show that a detailed understanding of LVL
including its formation process and spatial extent is essential to constrain the thermal structure
in the subduction zone.
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Characteristics of slab-derived fluids beneath Kii Peninsula inferred from seismic
traveltime tomography (2)
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Experimental constraints on the serpentinization rate of fore-arc peridotites:
implications for the welling condition of the "Arima-type" hydrothermal fluids
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In order to palce a constraint on the water circulation in subduction zones, hydration rates of
peridotites have been investigated experimentally in fore-arc mantle conditions. Experiments were
conducted at 400-580°C and 1.3 and 1.8 GPa, where antigorite was expected to form as a stable
serpentine phase. Crushed powders of olivine torthopyroxene and orthopyroxene + clinopyroxene were
reacted with 15 wt% distilled water for 4-19 days. The synthesized serpentine was lizardite in all
experimental conditions except that of 1.8 GPa and 580°C in the olivine + orthopyroxene system, in
which antigorite was formed. In the olivine + orthopyroxene system, the reactions were
interface-controlled except for the reaction at 400°C, which was diffusion-controlled.
Corresponding reaction rates were 7.0 x107'2-1.5 x10™"" m-s™' at 500-580°C and 7.5 x10°'® m’-s™' at
400°C for the interface- and diffusion-controlled reactions, respectively. Based on a simple
reaction-transport model with these hydration rates, we infer that leakage of the slab-derived
fluid from an water-unsaturated fore-arc mantle is allowed only when focused flow occurs with a
spacing larger than 77-229 km in hot subduction zones like Nankai and Cascadia, whereas the
necessary spacing is just 2.3-4.6 m in intermediate-temperature subduction zones like Kyushu and
Costa Rica. These calculations suggest that fluid leakage in hot subduction zones may occur after
the fore-arc mantle is totally hydrated, while in intermediate-temperature subduction zones,
leakage through a water-unsaturated fore-arc mantle may be facilitated.
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Analyses of equilibrium phase relations with recently-developed thermodynamic dataset of
rock-forming minerals has provided us significant information on distributions of stable mineral
assemblage and water content within the Earth’s interiors. However, based on the petrological
observations of metamorphic rocks and serpentinites, thermodynamic equilibrium is not always
attained during metamorphism at individual P-T conditions, and unreacted parts often remain. To
understand the dynamic behavior of the Earth’s interior, it is important to investigate essential
controls on the progress of metamorphic reactions. We have developed a novel model for the coupled
processes of surface reaction, fluid transport and fracturing during metamorphic reactions by a
distinct element method (DEM) (Okamoto and Shimizu, 2015). This model considers a reaction rate as
a function of fluid pressure, and revealed that contrasting fracture patterns are produced between
volume-decreasing dehydration (typical in prograde metamorphism) and volume-increasing hydration
reactions (retrograde metamorphism, or serpentinization).

In this contribution, we focus on the relative rate of fluid transport and surface reaction on the
fracture pattern during the volume-increasing hydration reaction. The new DEM model treats
transport of water in two ways; flow along the fractures and flow through matrix. The latter has
the similar effects to diffusion. For evaluate the system, we introduce two nondimensional
parameters; the ratios of the rates of fracture flow (Y;) and diffusion (Y,) to the surface
reaction rate. We found systematic changes in fracture pattern and system evolution as a function
of Y, and Y.. In the first case that reaction is faster than water transports (Y, <1 and low Y. <1),
the reaction proceeds from the boundaries and forms fine fractures layer-by-layer. In the second
case that reaction is faster than diffusive transport of water but much slower than flow along the
fracture (low Y<1 and high Y, >1000), the reaction proceeds inward effectively to form
hierarchical fracture networks. In the third case with high diffusion rate (Y, >10), the reaction
tends to proceed from the boundaries without fracturing. The dependence of the fracture pattern on
Y. and Y, suggests the importance of the rates of water transport relative to the surface reaction
rate in studying the mechanism and overall rate of water-rock reactions. The fracture pattern
generated in the second case is similar to mesh texture found in the partly serpentinized
peridotite in oceanic peridotites. We also discuss the effects of grain boundaries and will develop
the model to more realistic reaction system which incorporate element diffusion such as silica.

Okamoto and Shimizu (2015) Earth Planet Sci Let, 417, 9-18.

F—O—R ! RIG-YEBE-BROT r—RNRv D BHHRERZEK. BRELER

Keywords: reaction-transport-fracturing feedback, distinct element method, serpentinization

©2016. Japan Geoscience Union. A1l Right Reserved. - SCG57-P@5 -



SCG57-P06 HAMERSER S EA2016EAS

EADOKENR - EEREREDOBIMRICSH (T SEERED M DEE
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Transport of ocean floor sediments by plate motions might play an important role in the circulation
of materials within the Earth. Imaging subducted sediments through seismological observations
requires a thorough understanding of elastic properties of sediment origin hydrous minerals. Topaz
is a hydrous mineral, which can be formed from subducted sediment at high pressures. We have
studied elastic constants of single-crystal topaz and their temperature dependence by the
sphere-resonance method.

A sphere sample (D=6.483(1) mm) was made from a topaz single-crystal (Al, ,Si0,(F, ,0H, ,,))
collected from Nakatsugawa, Gifu Pref. by the two-pipe method. The uniformity of crystallographic
orientation was confirmed with SEM-EBSD (Shizuoka Univ.) measurement. Resonant frequencies were
measured at frequencies from 600 kHz to 1.5 MHz with different specimen-holding forces.
Extrapolating to the specimen-holding force of zero, we obtained frequencies of "free" oscillation.
The temperature was changed from @ to 402C. Elastic constants were determined by comparing measured
and calculated resonant frequencies. The xyz algorithm (Visscher et al., 1991) was employed to
calculate resonant frequencies of the sphere sample. At room temperature (18.72C), C11=281.3,
(22=346.3, (33=294.8, (44=108.5, (55=132.5, (C66=130.3, C12=121.5, (13=80.90, (23=81.73 (GPa). Using
determined elastic constants, compressional- and shear-wave velocities were estimated for an
isotropic polycrystalline aggregate of topaz at high temperature. Compresional- and shear-wave
velocities at 8002C are 9.32 km/s and 5.57 km/s, respectively. These values are significantly
higher than those in minerals like olivine or garnet.
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Introduction

Dehydration-hydration processes are thought to be essential for creating chemical heterogeneity in
the Earth’s mantle: e.g., the mantle geochemical end-member “HIMU" likely represents recycling of
an extremely dehydrated oceanic crust, and mantle geochemical hemispheres (Iwamori and Nakamura,
2012) seem to be originated from dehydration-hydration reactions in subduction zones. We
investigate behaviors of hydrophilic components during mantle convection and water transport using
a self-consistent numerical model in order to reveal the chemical evolution of Earth’s mantle with
geophysical validity.

Methods

A 2-D fluid mechanical simulation with following characteristics is conducted.

(1) Free convection of whole-mantle scale without synthetic forces (Tagawa et al., 2007).

(2) Phase diagrams of hydrous peridotite and hydrous basalt (Iwamori, 2007) to introduce hydration

and dehydration reactions.

(3) Realistic constitutive and state equations for the hydrous rocks to make (1) and (2)
interactive.

(4) Transport of multiple elements that can be partitioned between mantle rocks and aqueous fluid
using a Marker-in-Cell technique.

Results and Discussion

During slab subduction, dehydration reactions occur at specific p-T conditions. Then instantaneous
aqueous fluid enriched in hydrophilic components and less-hydrated residue minerals depleted in the
components are produced. The aqueous fluid is assumed to be immediately incorporated into dry rocks
through which the fluid percolates. The transported hydrophile elements are assumed to precipitate
with the fluid. In each run, three major dehydration and fractionation processes are reproduced as
follows.

[Process 1] (Depth < 200 km; under-arc process) Associated with dehydration of the subducted slab,
discharge of highly hydrophilic elements results in depletion of the slab subducting into deeper
mantle. The hydrophilic elements are deposited into the overlying lithosphere. This process does
not contribute to global redistribution of hydrophile elements, because of high viscosity in the
cold region. The depleted layer is fixed along the subducting slab for a long time.

[Process 2] (Depth = 660 km; slab penetration process) When the slab penetrates into the lower
mantle, the hydrophiles are continuously emitted depending on their partition coefficients during
dehydration associated with wet-Rw —->Pv + Mg0 + Aq transition. This process helps heterogeneity in
terms of the hydrophile elements to horizontally expand. During the slab penetration process, the
depleted rock as a product of 660-km dehydration is produced just below the phase boundary, and
descends into the deeper mantle.
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[Process 3] (Depth = 410 km; upwelling wet plume process) If the water-saturated layer is formed
just above the 660-km phase boundary, wet plumes enriched in the hydrophiles ascend due to their
buoyancy. After plumes reach the 410-km phase boundary, dehydration by Wd —>01 transition and the
corresponding fractionation of the hydrophiles occur. However, the depleted plume tails are not
well separated from the enriched plume head.

Among them, [Process 2] is the most efficient process for creating and distributing the geochemical
heterogeneity. [Process 2] with wet plumes and aqueous porous flows from the 660-km phase boundary
involves a possible mechanism to produce the observed geochemical hemispheres representing a
hydrophile-rich part (eastern hemisphere) and a depleted part (western hemisphere) (Iwamori and
Nakamura, 2012).

F—O—R ! BUKEMETTR. KX, VYRV, 660kmittER AN ERE. V> ~IVHERAEIE, TR A

Keywords: hydrophilic trace elements, water transportation, mantle convection, 66@-km phase
boundary, chemical heterogeneity of mantle, element partition
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Iron-titanium oxyhydroxides as a water transporter into the Earth’s mantle transition zone

e B/F'. BER L Liu Xingcheng'. #8AK #GA. R BN, =15 *—'
*Kyoko N. Matsukage', Yu Nishihara?, Xingcheng Liu', Toshihiro Suzuki', Yusuke Seto®, Eiichi
Takahashi'

T RRIEXFHIRBERZEIR, 2. FRAPHIRRIBI 7 F = O IMREY I — 3. HFARZREFER
1.Earth and Planetary Sciences, Tokyo Institute of Technology, 2.Geodynamics Research Center, Ehime
University, 3.Department of Planetology, Kobe University

e5F. EBYY MUVEBRETOBEERICHVT, REFIVEEIRFETIHLLEKEEXIRA +
KDRTHRRE U, {EZHEMN SFe00H-TI0,RDEBATH BN FERINZN. KREDRTIIRIENNS
<O BIRTOXREITCIRDADNRE CH o /zfzoh. BEDERE B2, Fe00H-Ti0, RT 7 BEDHAENE
(x = Ti/(Fe + Ti)[RFtL = 0, 0.125, 0.25, 0.375, 0.5, 0.75) ZFeOOHETi0,MEAETEG L. HEEV
VF 7 VLB TEIS-166Pa, SEEI900-1600°CT SREBEIT o/, TORER. (FeH), Ti0,0{b34E
BERD 2 BEDFeTI/KBILYMHBRER T NE, —DBIE. FellBEARHEMEES (x < 0.23). BRBEE
e-FeOOH (RISER, P2,om) EAUTH Iz (BIR(E Suzuki 2010) o ES5—DIF TIlCEATH D (x >
0.35). a-Pb0, BU(RITRR, Pbcn) DIEREEZEHEL TU\Zo CMDa-Ph0, BIDFeTi/kEE{E¥(INishihara and
Matsukage (2016)(CHVTHRTHINH THE I NIz, a-Pb0, BUDFeTIKEMEME. x = 0.75DFE. ENF
8-18GPa. SRE(I#I1600( X TLE T, IRV Y MILDOFMBNE CEFEAETH B,

FAI2 B3 5 ICKHAE +HKDRTDOFeTIKBEYINREFEHERBICTHANTHS DAL EE1000 ©

C. 8-17GPaDEEH CTRETHBIEMIMN D TULD, 176PaEBX D& FeTiKELMINDERL . TilFCaTiRO T
2N LCPBEIN. KIFAVE S ATZphase-DICHIEMAND (Liu et al.. KRB THRERFTE) . FITHEIC
HUV T, KEEEDBFMR(C(EENDT106PaU L TRELSEKILMHNFHEE T, ZNEHIRBAEMRNER Y
VHIVEBBEE TREESC ERHRLEVERDNTU R, LA L. AHARICELBFHLVEKEOHER(C

L2 T KREDMRNICKE VY RIVEBBYL TRV Y MILETEREV S3FHDN D/,

F—O—R ! EEBVY RV, VY RILBBE. K FIY. SKE. KHEHR
Keywords: deep upper mantle, mantle transition zone, water, titanium, hydrous phase, basaltic crust

©2016. Japan Geoscience Union. A1l Right Reserved. - SCG57-P10 -



SCG57-P11 HAMERSER S EA2016EAS

TAE— XU SEOTTRDEEFRIDEHH : bond valence ZDIGA
Prediction of elemental partition between fluid and melt by bond valence method

Rl EE

*Masami Kanzaki'

1. LXK ER ER R V5 —
1.Institute for Study of the Earth's Interior, Okayama University

TTRPEBICDUVTIE. INB. MFSICLBD TSIV DLEBEICKD., BRAOTF VEORBAEENRDEE
E(CHIEIL TLD M h oz (Matsui et al., Bull. Soc. fr. Mineral. Crystallogr., 1977), &M
ITwvtYREFHDRRETIVOCZOREETIVEFE DT, TEDED FAEER ] FRARKITEDODNTO

Do CNESDEFTILTIE. XIVEPTILT RIFEZENICERDIZRNDNTUEL. CNUEIXILRPRTILT ROBFHR
BEOCYENRI LS DD D> TUOEWZHTH D, TN FIXETIL1 R—XIVEDOTREAEE TS
EFTEEL, B, BE(Ibond valencel ZNDENEBREICHBETERINTIILUAERBODE, ERETH
LTHEECD. FHNICKIVERZSZ. TNETIVTR—XIVLRIEIGATSCEEHABTHED. Z0
RIEDVWTHET B,

bond valence(bv)iBZ&(E. 7 VERPICHUVT. B VDM ZE. ZNICEMLTUVSRTZ Y EDR/S
(CHLUTRAITZDENT (FEH) . juldPaulingdbond strength(CEHX T B, ZNDE. 1.D. BrownS NFEE
TEEEOVETIRRFEEMAEENCERINTUL S (RFHEEBRMNARVEVIINSKESD), bvDEIREID1D
(Fexp((Ry-ry;)/B)DIEEED. r(JRFRIER. R, BETEEED/ISA-ITHSB, BETIE. FLERF
(DU ThvDF(bvsum) ZED & FIDERFDvalence& (FIF—BT D, KELTFNBDHBHIIEECASH DA
BRH D, BEFZTEBOSNZEBEDF T v, ZMRFOMBORE. OHLFEDRIELE [CLEDNTO
Do WEEBET —IN—IZFEOT. HEDRAZV(ECER)ICRUT. BBBTAVDb/ISA—5—MNZF
EAEDTRICDVWTRHOSNTULSD, LIZM> T, BREENRDH >TUONE. ZEDT—F&[FEOT, fc&
Z (S forsteriteMMAE (CIRABHICSIE ANTZIBE DbvsumE BT B ENTED. TENEODEREITETZ 17
VEANERObysumld. Mg SEFAEZT<TFND, COFNIE EH] IRILF—ERRDICEETE
B, HEIES. bvDHAEREI2NERT VI v ILORELRIVF - EBNELDREHTH D, TC

T. misfit = abs(bvsum - Q)& E&HET B QIFDT7 VDFRvalence) , BHEDERDnisfitEEED

E. CNEZOBRAODEEHENLIESNBIENDH oz CDAETTorsteriteM1/M2, opxdD
MI/M2DEEA TOECRE |, garnet/chlorite’™d & DGR D ERE] ZBRLTRICDVWTEIET S

. BRI ERBDNRT—UNESNE, COSRIEIHERICEMTRIABY I +TRZX S, BRELDER
EICHFTDHOREF—EERER b/ IS A —9DHTHDNDT. perovskite/postperovskiteDPEELE £F
BTED, WENRTENEDEURE TR ZDRRE(CEZX D EMDH M nisfitEEDEREHREE S
EEMNCHIESTE DN, MHEOEBREDIROEENEDIRVLE RFERBRTE O TLD,

3T, TILTREXIVEOBFBENRD N> TUNIE. EEEDBETIILT B— XU SEDE O E R
MTEB3, LN L. BEERSZENREIFEILS AN D TUVEL, BTy TILTREXIVRZENZENICDNT
RIENEFEZE1DE X T(ERMMSEE). TNODFEOAET S (RFHEEM) EZEXT. PEBEOELERTH

fzo Pearce(doi:10.1029/2004GC000895)(C LMK, TILT R—XJULET(EBa, Cs, K, Pb, SriRTJL-T R
~. REE, Nb, Ta, ZIr, HFIFEFXILFEINB<EBET I ETNTUD. EDXDE/IRI—VIE. TIL1 REID
EM3.2 AKS0DAETE. XIVHAIMR2.5 AKSLDBEICESNE. NEDEHIEEINTUDIM. CDELD
SEFBEETIVEHEXE. MOTRDIRDIBUVEFHUITDICENTETIESES (COBREXIETZA VD
#H) o BAIBEIUKRES(CLD. DE/INI—VIEIBFABETRKELEDNDSINT. EREDEREHRNRZ DT
RZCTEHINNE. FICTILTREXIVEDEFBEZEHINT BEHEZXDINELNLEL, SE. F—RE
SR ETESI(ICRIET IMERH S S,

F—O—R IRYRNLYRE TRDE. TE. XU, BFEE
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SV YPNEIC K BIFBIRIRRENALL DT (ZENITTE D DO ?

Is the non-destructive analysis of carbon isotope ratio useful?

*Zl = BX =2AL LA IEE’

*Kohei Takahata', Junji Torimoto’, Junji Yamamoto®

1.A6BERZXZRIEZ EALRNZERMRRE > X 7 ARIZEE, 2. EMERRAREA G FHTTrRE
B, 3.dEE XS EYE
1.Earth and Planetary System Sciences, Hokkaido University, 2.JAMSTEC, 3.Hokkaido University Museum

RERFMEK E(ICEET IEREMTRO—DOTH D, MEREZEEL THIRREDREBICZALIZEESXTE
Jz. BTE, RE-BREEYTHDI _BILRRTBENRERS, BLADEEESHICK > THEINS Z#1L
REMEROSFLERERIEEEZ5 LTV EZEZISNTUSD. “BLRERSHKEEIETHDI VY ~
BB ERCERETEYE U TEHERINDS. KB EEL CTHIEKERASHEIN TCEREEERBELE
1H5E, REOHKKREB(ICHEEIT IREE(ICEMIDEIEND_BIEREZENBRHEINTETEITIAETHD

7, VY RIVEBEE RV CHEKERRRDEFECRRBREZEMR T S & (3, MEKRBREED L DRV ER
([CEDTEETHD.

REDOVY Y VBB ENDREZERMUAL DRI EY Y TILOBIEANMES, BIENOTEDBREDE T EVS R TH
BB SD. CNODBEEERRATETIREUNRGIFIEREFEE LT, SV IYDHEILKDRERMIAL
BIEMRSHSD. ULHL, COFEFVY RIVBEBETORZDEREZ EENCERIKDIZITORBEZZE
FoTULWEL. KIAETIE, FTITHREIDEESREAIREZFTOSVIUONBREALT, RERDEREZ ETEN
(CEMHERDBENEBIET. Tz, BONCHBRERCRENERICDVTEREL, SEOBEALORE
ZlcounTEmLTu<.

BIEDRER, RERMUALLDFTORBE(Z1500/) T1265TH D EMBESHMIE O IZ. COEOIHEBVBEIC
HoTUE2RERELT, AAETHWZS VY AHIMREDRENEINZE(FSND. FKITHETHL
SNESVIUDHAINRELD EARAETHUZREIN/26B80ORETH >R, S/ NE+DICERSZER
BT, E—DTrvTa YIEERICITRENOIZ. Z2CT, LDZBLOADY RHEREBLIZBAIC, £
NEITAEBENRA LT SMEEEZTHSC. ZORBR, SEDAETHOAEREIRS T8 (1 0) THH L
HETEZ. LHAL, VYNIURBEDERRE EEMNCERT BICIIREEREMKETU.
COBRENBERAERBELLER, EREHFCLZIENTIOSVYIITREZRBLTULWEN > ENRERTH
BCEMBEASHEL DTz, COBRERELUER, RIERE(E1500 sec. THISTHRIER K D+9%ME EL

Iz, Tz, BERORECLDIEEEZZRING, KEAGENDIEOOV Y MNUBEBETO _BILRERETE
MOIREZRERD, BREHSDAEETXDCEMBESHICHE O Z.

F—D— R TEGRE. REEEY. SYYANE. VY RIUREE. REREL

Keywords: carbon dioxide, fluid inclusion, Raman spectroscopy, mantle xenolith, carbon isotope
ratio
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