Global carbon budget estimation based on atmospheric oxygen and carbon dioxide observation during recent 15-year period

*Yasunori Tohjima¹, Mukai Hitoshi¹, Toshinobu Machida¹, Shin-ichiro Nakaoka¹

1.National Institute for Environmental Studies

Time series of atmospheric $0_2/N_2$ ratio and CO_2 mixing ratio of flask samples taken from NIES's flask sampling network are presented. The network includes ground sites, Hateruma Island (lat 24°03'N, long 123°48'E) and Cape Ochi-ishi (lat 43°10'N, long 145°30'E), and cargo ships regularly sailing in the Pacific region. The air samples collected in Pyrex glass flasks were sent back to our laboratory and the O_2/N_2 ratio and CO_2 mixing ratio were analyzed by using a GC/TCD and NDIR analyzers. Taking into account the global mass balances of atmospheric CO_2 and CO_2 , we estimate the global carbon sequestration rates of the ocean and land biosphere for the recent 15-year period. In this carbon budget calculation, we use the secular changes in the atmospheric CO_2 and CO_2 burdens based on our flask observations and the fossil fuel-derived CO_2 emissions based on energy statistics. We also adopt the ocean CO_2 outgassing fluxes (CO_2 emissions based on energy statistics. We also adopt the ocean heat content (CO_2 000m) and an estimated CO_2 -to-heat flux ratio. For example, the oceanic and land biotic carbon sequestration rates for the 15-year period (1999-2014) calculated from the observation at Hateruma Island are CO_2 10.7 Pg-C yr⁻¹ and CO_2 10.8 Pg-C yr⁻¹, respectively. In the presentation, we also examine the temporal changes in the global carbon budgets and compare our estimations with the other reported carbon budget estimations.

Keywords: global carbon budget, oxygen, carbon dioxide