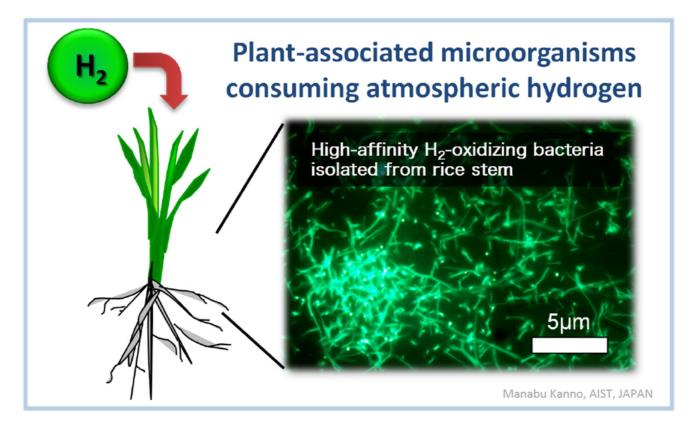
Contribution of plant-associated microorganisms as global sinks of atmospheric hydrogen


*Manabu Kanno¹, Philippe Constant², Hideyuki Tamaki¹, Yoichi Kamagata¹

1.National Institute of Advanced Industrial Science and Technology, 2.Centre INRS-Institut Armand-Frappier, Canada

Hydrogen (H_2) is an important constituent of the atmosphere, with a typical mixing ratio of 0.530 parts per million by volume (ppmv). Rising H₂ emissions under a future H₂-based economy are concerned to increase the atmospheric burden of H_2 , resulting to the indirect influence of the lifetime of greenhouse gas CH_4 , an alteration of temperature and ozone loss in the stratosphere. Thus, mitigation of H₂ emission is of critical importance for atmospheric chemistry. The most part $(\sim 80\%)$ of tropospheric H₂ is consumed by microorganisms in soil. A recent literature survey of H₂ flux measurements unveiled that soil H, uptake is responsible for the loss of 40 to 90 Tg yr⁻¹. Recently, high-affinity H₂-oxidizing bacteria possessing novel hydrogenase have been found as important contributors to the soil H₂ uptake. Although previous experiments using molecular tritium reported the occurrence of significant H₂ uptake activity in vegetation, there has been no report on the identification and diversity of the responsible microorganisms. This study aimed to verify the existence of plant-associated bacteria possessing the ability to consume atmospheric H_2 . We first investigated the presence of *hhyL* gene in various plant species. The *hhyL* gene, which encodes for the large subunit of the novel group of hydrogenase, has been generally used as a functional biomarker to evaluate the distribution, taxonomic diversity, and abundance of high-affinity H,-oxidizing bacteria. In total, 42 hhyL gene sequences were successfully detected in all tested herbaceous plants, indicating a wide distribution of high-affinity H,-oxidizing bacteria in plants. It is noteworthy that the abundance levels of *hhyL* gene detected in plants were comparable to those detected in soil. High-affinity H₂-oxidizing bacteria were isolated from inside herbaceous plant tissues. Among 145 isolates, 7 Streptomyces strains were shown to possess hhyL gene. The H₂ uptake activity was evaluated by gas chromatography. All the isolates reduced H₂ concentration to less than 0.530 ppmv, demonstrating the ability to consume H_2 at ambient level. Sterile plant seedlings were inoculated with selected isolates to verify their ability to penetrate and disseminate in plant tissues and scavenge atmospheric H_{2} in plant. After four weeks of seedling inoculation, an internalization of the bacteria in plant tissues was visualized by fluorescence in situ hybridization imaging. H₂ oxidation rates measured in plant fractions ranged from 1079 to 3472 pmol $g_{(dw)}^{-1}$ h⁻¹. These rates are comparable to the previously observed activity of atmospheric tritium uptake in other plants. Importantly, atmospheric H_2 is not oxidized in aseptically grown plants, clearly showing that plant-associated bacteria was responsible for H₂ loss. H₂ uptake activity per bacterial cell was comparable between plant and soil, demonstrating that both environments are favorable for the microbial-mediated H₂ uptake.

In conclusion, this study demonstrated the occurrence of plant-associated high-affinity H_2 -oxidizing bacteria and their ability to consume atmospheric H_2 on plant surface or inside plant tissues. From a global perspective, herbaceous and woody plant biomass represent approximately 64 Pg, and 736 Pg, respectively. Considering that high-affinity H_2 -oxidizing bacteria may be present and active in these plants, the contribution of plant-associated bacteria deserves more attention to better understand the global cycling of atmospheric H_2 .

Keywords: biogeochemistry, microbial ecology, tropospheric H2 cycle, vegetation

