Estimation of the CO₂ source by measuring oxygen and carbon isotopes in atmosphere

*Yu Hoshina¹, Yasunori Tohjima¹, Yukio Terao¹, Keiichi Katsumata¹, Hitoshi Mukai¹, Toshinobu Machida¹ , Yumi Osonoi¹

1.National Institute for Environmental Studies

Atmospheric carbon dioxide (CO_2) concentrations observed in urban and continental areas and the surrounding areas often show short-term elevations on a timescale from several hours to several days. These variations are considered to be attributed to the CO_2 emissions from biotic activities and burning of fossil fuels (coal, oil and natural gas). If the contribution rate from each CO_2 source is clearly determined, the uncertainty of the CO_2 emissions estimated from atmospheric inversion calculations would be reduced. In this study, we develop a method to evaluate the contribution rate from individual sources based on measurements of carbon stable isotope (¹³C), radiocarbon (¹⁴C) and O₂ concentration as well as CO_2 concentration in the atmosphere. The $-O_2:CO_2$ exchange ratios of the fossil fuel burning are different for the fuel types because the ratios are stoichiometrically related to the elemental compositions of the individual fuels. The ¹⁴C measurements is useful to separate the fossil fuel emissions from the biotic emissions because the fossil fuel-derived CO_2 contain no ¹⁴C. In addition, values of ¹³C depend on source of CO_2 . Therefore, the combination of CO_2 measurements with O_2 , ¹³C and ¹⁴C measurements allow us to estimate the contribution rates of the individual CO_2 source.

In this presentation, we show preliminary results of the atmospheric measurements which were conducted at Tsukuba in July-August 2015 to assess the usefulness of the above method. In the experiment, the atmospheric CO_2 and O_2 concentrations were continuously measured, and the air samples were collected in the glass flasks to measure the carbon isotopes. The relations between CO_2 concentrations and $\Delta^{14}C$ for the observed CO_2 change suggest that 60-70% of the CO_2 change are attributed to the fossil fuel-derived CO_2 . Taking into account of the $-O_2:CO_2$ ratio for land biotic processes of 1.1, we can obtain the $-O_2:CO_2$ ratio for the fossil fuel component of the observed changes of 1.37–1.41, which is close to the exchange ratio for oil burring (R=1.44). The relation between CO_2 and ^{13}C is also consistent with the above result.