Net uptake of atmospheric CO_2 in human-dominated estuarine and shallow coastal systems: empirical studies and the ecosystem modeling

*Tomohiro Kuwae¹, Jota Kanda², Atsushi Kubo², Fumiyuki Nakajima³, Hiroshi Ogawa⁴, Akio Sohma⁵, Masahiro Suzumura⁶

 Port and Airport Research Institute, 2.Tokyo University of Marine Science, 3.University of Tokyo,
Atmosphere and Ocean Research Institute, 5.Mizuho Information and Research Institute, 6.National Institute of Advanced Industrial Science and Technology

Estuarine and shallow coastal systems (ESCS) are recognized as not only significant carbon reservoirs but also net emitters of CO_2 to the atmosphere, posing the dilemma of how ESCS functions relate to climate change mitigation. However, some studies have shown that ESCS take up atmospheric CO_2 . Here we reviewed empirical studies and developed a new ecosystem model to investigate the magnitude and determinants of net uptake atmospheric CO_2 by ESCS. We found that the capability of ESCS to function as CO_2 sinks is enhanced by environmental conditions that are typical of human-dominated systems (e.g., input of high terrestrial nutrients, input of treated wastewater in which labile carbon is highly removed, and presence of hypoxia).

Keywords: Blue Carbon, Climate change, Ecosystem model