N_2 0の空間・時系列変化およびその大気寄与の評価 Evaluate the spatial and temporal variation of N_2 0 and associated flux into the air

*有富 大樹¹、小野寺 真一¹、齋藤 光代²、大西 晃輝³、丸山 豊¹
*Daiki Aritomi¹, Shin-ichi Onodera¹, Mitsuyo Saito², Koki Onishi³, YUTAKA MARUYAMA¹

1.広島大学大学院総合科学研究科、2.岡山大学大学院環境生命科学研究科、3. (株) 復建調査設計 1.Graduate School of Integrated Arts and Sciences, Hiroshima University, 2.Graduate School of Environmental and Life Science, 3.Fukken Co., Ltd.

In order to evaluate the spatial and temporal variation of N_20 and associated flux into the air in a granite unconfined aquifer of Ikuchi Island, water samples were collected from 9 observation wells with different depths and 6 observation wells in the groundwater discharge area from 2013 to 2015 and analyzed for N_20 , NO_3^- -N and Cl^- . The results showed that the concentrations of dissolved N $_20$ changed with water depth, which can be attributed to the C/N ratio. When the C/N ratio ≤ 5 , high concentrations of dissolved N_20 occur. In addition, the N_20 concentrations increased with the redox condition of water changes from oxidation to reductive. However, when water was in strong reductive conditions such as $ORP \leq -200$ mV, the relative low concentrations of N_20 took place, since N_20 can change into N_2 due to the complete denitrification. Dissolved N_20 concentrations also increased in dry seasons, when most of observation wells being in a reductive state. In the groundwater discharge area, dissolved N_20 and NO_3^- -N concentrations decreased along the groundwater flow pathway, which results from the dilution of seawater and denitrification. The flux of N_20 into air was estimated to be 49gha⁻¹year⁻¹, the same level as seawater emission rate. Whereas, in a high precipitation event(precipitation ≤ 30 mm/day), 5gha⁻¹day⁻¹ (about 10 percent of annual N_20 emission) would emission into air.