Evaluate the spatial and temporal variation of N_2O and associated flux into the air

*Daiki Aritomi¹, Shin-ichi Onodera¹, Mitsuyo Saito², Koki Onishi³, YUTAKA MARUYAMA¹

1.Graduate School of Integrated Arts and Sciences, Hiroshima University, 2.Graduate School of Environmental and Life Science, 3.Fukken Co., Ltd.

In order to evaluate the spatial and temporal variation of N₂O and associated flux into the air in a granite unconfined aquifer of Ikuchi Island, water samples were collected from 9 observation wells with different depths and 6 observation wells in the groundwater discharge area from 2013 to 2015 and analyzed for N₂O, NO₃⁻-N and Cl⁻. The results showed that the concentrations of dissolved N $_2$ O changed with water depth, which can be attributed to the C/N ratio. When the C/N ratio \leq 5, high concentrations of dissolved N₂O occur. In addition, the N₂O concentrations increased with the redox condition of water changes from oxidation to reductive. However, when water was in strong reductive conditions such as ORP \leq -200mV, the relative low concentrations of N₂O took place, since N₂O can change into N₂ due to the complete denitrification. Dissolved N₂O concentrations also increased in dry seasons, when most of observation wells being in a reductive state. In the groundwater discharge area, dissolved N₂O and NO₃⁻-N concentrations decreased along the groundwater flow pathway, which results from the dilution of seawater and denitrification. The flux of N₂O into air was estimated to be 49gha⁻¹year⁻¹, the same level as seawater emission rate. Whereas, in a high precipitation event(precipitation \leq 30mm/day), 5gha⁻¹day⁻¹ (about 10 percent of annual N₂O emission) would emission into air.