Investigation of salinization processes in a confined aquifer system; Application of sulfur and chlorine stable isotopes

*Masaru Yamanaka¹

1.Department of Earth and Environmental Sciences, College of Humanities and Sciences, Nihon University

A combination of sulfur and chlorine stable isotopes ($d^{34}S$ and $d^{37}Cl$) has been used to investigate salinization processes in a confined aquifer system in southwestern Nobi Plain (SWNP), central Japan. Deduced from the SO_4/Cl ratios and $d^{34}S$ values, a tongue of brackish confined groundwater ($Cl^->1000 \text{ mg/L}$), which extends from the shoreline of Ise Bay inland, mostly has two salinity sources; One is modern seawater, another is paleo seawater having no SO_4^{2-} due to sulfate reduction process. The Cl isotopic compositions are negatively correlated with paleo seawater Cl^- concentrations, while they are not correlated with either total Cl^- concentrations or $d^{34}S$ values. Furthermore, Cl^- concentrations from modern seawater are positively correlated with $d^{37}Cl$ values. In addition to these observations, diffusion model calculations suggest that paleo seawater Cl^- has diffused in argillaceous freshwater sediments whereas modern seawater Cl^- has not been affected by preferential diffusion of Cl isotopes because it has migrated by advection via both an unconfined aquifer and non-pumping wells.

Keywords: paleo seawater, diffusion process, confined aquifer