Distribution of ²³⁶U in the North Pacific Ocean

Rosmarie Eigl¹, *Aya Sakaguchi², Peter Steier³, Kohei Sakata¹

1.Earth and Planetary Systems Science Hiroshima University, 2.Tsukuba University, 3.University of Vienna

 236 U is a mainly anthropogenic, rare uranium isotope with a half-life of 23.4 M yrs. In recent years, the development of accelerator mass spectrometry (AMS) has made the detection of 236 U in the general environment possible and research was conducted towards the application of this nuclide as oceanic tracer. 236 U seems well suited as oceanic tracer, because it has a well-defined, temporally resolved source function and shows conservative behaviour in seawater with a long residence time of ~ 5×10^5 yrs. In this work, we focus on the North Pacific Ocean, where no data on 236 U has been published so far and will present a new pre-treatment method to treat small size (1 L) seawater samples.

Seawater samples were collected from the North Pacific Ocean in GEOTRACES cruises with R/VHakuhomaru, in 2011, 2012 and 2014 (KH-11-07, HK-12-4 and KH14-6). 1 L, 5 L and 20 L of seawater samples were collected from several depths in each site, and immediately after the sampling, the water was filtered with about 0.45 mm pore-size cartridge filters. ²³⁸U concentrations in seawater were measured with ICP-MS after acidification. As for 1 L of seawater samples, uranium was purified with UTEVA resin , and precipitated in only 100 µg of iron carrier to prepare targets for the measurement of ²³⁶U/²³⁸U by AMS. In the 5 L and 20 L samples, no column separation for uranium was done, but actinide elements were separated by a simple co-precipitation with iron hydroxide, which leaves the possibility of detecting several actinides (U, Np, Pu) from one sample. Using the newly constructed target preparation procedure for the measurement of ²³⁶U in small sizes of seawater samples, 5-10 times higher ion currents were achieved compared to the conventional method and ²³⁶U was successfully determined on all levels of the water column. Also, measurement times could be significantly reduced, which seems promising for future applications of ²⁵⁶U as oceanographic tracer, when large numbers of samples from vast ocean areas need to be analysed in a timely and cost-efficient way. $^{236}U/^{238}U$ isotopic ratios were highest $(7.6 \times 10^{-10} \text{ to } 1.4 \times 10^{-9})$ in shallow water. From surface level to a depth of about 1000-1500 m, all depth profiles showed a steep decrease in 236 U concentrations and 236 U/ 238 U ratios in deep water were in the order of 10⁻¹¹-10 $^{-12}$. The inventories of 236 U on the water column were calculated as $(3.6-7.3)\times10^{12}$ atoms/m², which is significantly lower than for the Sea of Japan with $(1.4-1.6)\times10^{13}$ atoms/m². These results show the lower extent of vertical transport in the Pacific Ocean and are probably an indicator for lower precipitation rates in the North Pacific Ocean. ²³⁶U distributions were in correspondence to the main water masses (as defined by physical oceanographic parameters) and ²³⁶U concentration patterns were similar to those of ¹³⁷Cs, which has been conventionally used as oceanographic tracer in this area.

Keywords: U-236, North Pacific Ocean, AMS, Geotraces, global fallout