Distribution of 236U in the North Pacific Ocean

Rosmarie Eigl¹, *Aya Sakaguchi², Peter Steier³, Kohei Sakata¹

¹.Earth and Planetary Systems Science Hiroshima University, 2.Tsukuba University, 3.University of Vienna

236U is a mainly anthropogenic, rare uranium isotope with a half-life of 23.4 M yrs. In recent years, the development of accelerator mass spectrometry (AMS) has made the detection of 236U in the general environment possible and research was conducted towards the application of this nuclide as oceanic tracer. 236U seems well suited as oceanic tracer, because it has a well-defined, temporally resolved source function and shows conservative behaviour in seawater with a long residence time of ~ 5$x10^5$ yrs. In this work, we focus on the North Pacific Ocean, where no data on 236U has been published so far and will present a new pre-treatment method to treat small size (1 L) seawater samples.

Seawater samples were collected from the North Pacific Ocean in GEOTRACES cruises with R/V Hakuhomaru, in 2011, 2012 and 2014 (KH-11-07, HK-12-4 and KH14-6). 1 L, 5 L and 20 L of seawater samples were collected from several depths in each site, and immediately after the sampling, the water was filtered with about 0.45 mm pore-size cartridge filters. 238U concentrations in seawater were measured with ICP-MS after acidification. As for 1 L of seawater samples, uranium was purified with UTEVA resin, and precipitated in only 100 µg of iron carrier to prepare targets for the measurement of 236U/238U by AMS. In the 5 L and 20 L samples, no column separation for uranium was done, but actinide elements were separated by a simple co-precipitation with iron hydroxide, which leaves the possibility of detecting several actinides (U, Np, Pu) from one sample.

Using the newly constructed target preparation procedure for the measurement of 236U in small sizes of seawater samples, 5-10 times higher ion currents were achieved compared to the conventional method and 236U was successfully determined on all levels of the water column. Also, measurement times could be significantly reduced, which seems promising for future applications of 236U as oceanographic tracer, when large numbers of samples from vast ocean areas need to be analysed in a timely and cost-efficient way. 236U/238U isotopic ratios were highest (7.6$x10^{-10}$ to 1.4$x10^{-9}$) in shallow water. From surface level to a depth of about 1000-1500 m, all depth profiles showed a steep decrease in 236U concentrations and 236U/238U ratios in deep water were in the order of 10^{-11}-10^{-12}. The inventories of 236U on the water column were calculated as (3.6-7.3)x10¹² atoms/m², which is significantly lower than for the Sea of Japan with (1.4-1.6)x10¹³ atoms/m². These results show the lower extent of vertical transport in the Pacific Ocean and are probably an indicator for lower precipitation rates in the North Pacific Ocean. 238U distributions were in correspondence to the main water masses (as defined by physical oceanographic parameters) and 236U concentration patterns were similar to those of 137Cs, which has been conventionally used as oceanographic tracer in this area.

Keywords: U-236, North Pacific Ocean, AMS, Geotraces, global fallout