Development of automatic analysis apparatus for triple oxygen isotopes of dissolved oxygen

*Masanori Ito¹, Hiroki Sakuma¹, Daisuke Komatsu², Fumiko Nakagawa¹, Urumu Tsunogai¹, Toyoho Ishimura³

1.Graduate School of Environmental Studies, Nagoya University , 2.Department of Marine and Earth Science, School of Marine Science and Technology, Tokai University, 3.National Institute of Technology, Ibaraki College

Oxygen molecules (0,) consists of triple oxygen isotopes (mass numbers 16, 17 and 18) providing additional unique information such as triple oxygen isotopic compositions (Δ^{17} 0 = ln(δ^{17} 0 + 1) - $0.518\ln(\delta^{17}0 + 1))$. In most of the terrestrial processes (e.g. photosynthesis and respiration) fractionate O isotopes in a mass-dependent way, such that ¹⁷O enrichment is about half of the ¹⁸O enrichment relative to ¹⁶O. As a result, δ^{17} O and δ^{18} O in terrestrial materials plot along a single line with a mass-dependent slope of about 0.52. In contrast to these mass-dependent processes, ultraviolet-induced interactions among 0_2 , 0_3 , and $C0_2$ in the stratosphere cause mass-independent fractionation with equal lowering of δ^{17} 0 and δ^{18} 0 in atmospheric 0₂. Therefore, Δ^{17} 0 of photosynthetically-produced 0_2 in the hydrosphere shows higher values of about +150 - 250 per meg compared to atmospheric O_2 . Since the $\delta^{17}O$ and $\delta^{18}O$ of O_2 fractionated by respiration vary along a line with a mass-dependent slope, which means the Δ^{17} O will not change, we can estimate a mixing ratio of 0_2 produced from photosynthesis in the hydrosphere (Δ^{17} 0 = ca. +150 ~ 250 per meg) and atmospheric O₂ (Δ^{17} O = ca. +150 ~ 250 per meg) dissolved in water. This will make it possible to estimate gross primary production in the lake and ocean or the air-water gas exchange coefficient by measuring the Δ^{17} O of dissolved O₂. In this study, we constructed the new purge and trap system to measure Δ^{17} O of dissolved O₂. The system is fully automated, extracting dissolved gases from the water samples, separate 0, from all the other gases including Ar, and collecting pure 0, using a cryogenic temperature cooling sampling device (ca. 10K). We will report Δ^{17} O values of dissolved O, in Lake Biwa where remarkable eutrophication and hypoxia have been observed in recent years.

Keywords: dissolved oxygen, triple oxygen isotopes, vertical profile