Scaling-law for early-stage development of magnetic reconnection

```
*Kenya Shimizu<sup>1</sup>, Masaki Fujimoto<sup>2,1</sup>, Iku Shinohara<sup>2</sup>
```

1.Graduate School of Science, Tokyo University, 2.Japan Aerospace Exploration Agency/Institute of Space and Astronautical Science

A scaling-law for early-stage development of magnetic reconnection has been found from comparing two-dimensional particle simulation results of anti-parallel magnetic reconnection (asymptotic field denoted by B_{θ}) with different current sheet thicknesses (D) and different ion-to-electron mass ratios (M). In these runs, magnetic reconnection is initiated by adding non-zero magnetic field normal to the current sheet. When the reconnected flux (in the B_{θ} D unit) at various times is plotted versus re-scaled reconnection electric field $E_{rx} D^{1/2}$ (E_{rx} in the $V_A B_{\theta}$ unit, where V_A is the relevant Alfven speed) obtained simultaneously, by which procedure a curve is obtained from each run, the curves obtained from the early development phases (reconnected flux < 2) of various runs are found to overlap among themselves. The spatial structures of some quantities around the X-lines determine the reconnected from different runs, we confirm that the non-dependence on M and the D ^{1/2}-scaling of the reconnection rate are consistent with how the spatial scales vary according to M and D.

Keywords: Magnetic Reconnection